Template:For Template:Redirect-distinguish Template:Infobox number 900 (nine hundred) is the natural number following 899 and preceding 901. It is the square of 30 and the sum of Euler's totient function for the first 54 positive integers. In base 10, it is a Harshad number. It is also the first number to be the square of a sphenic number.

In other fieldsEdit

900 is also:

|CitationClass=web }}</ref>

|CitationClass=web }}</ref>

|CitationClass=web }}</ref>

Integers from 901 to 999Edit

900sEdit

|CitationClass=web }}</ref> Schröder–Hipparchus number, Mertens function(903) returns 0, little Schroeder number

  • 904 = 23 × 113 or 113 × 8, refactorable number, Mertens function(904) returns 0, lazy caterer number, number of 1's in all partitions of 26 into odd parts<ref>Template:Cite OEIS</ref>
  • 905 = 5 × 181, sum of seven consecutive primes (109 + 113 + 127 + 131 + 137 + 139 + 149), smallest composite de Polignac number<ref>{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref>

  • 906 = 2 × 3 × 151, strobogrammatic, sphenic number, Mertens function(906) returns 0
  • 907 = prime number
  • 908 = 22 × 227, nontotient, number of primitive sorting networks on 6 elements,<ref name = "A006245">Template:Cite OEIS</ref> number of rhombic tilings of a 12-gon <ref name = "A006245"/>
  • 909 = 32 × 101, number of non-isomorphic aperiodic multiset partitions of weight 7 <ref>Template:Cite OEIS</ref>

910sEdit

  • 910 = 2 × 5 × 7 × 13, Mertens function(910) returns 0, Harshad number, happy number, balanced number,<ref>Template:Cite OEIS</ref> number of polynomial symmetric functions of matrix of order 7 under separate row and column permutations<ref>Template:Cite OEIS</ref>
  • 911 = Sophie Germain prime number, also the emergency telephone number in North America
  • 912 = 24 × 3 × 19, sum of four consecutive primes (223 + 227 + 229 + 233), sum of ten consecutive primes (71 + 73 + 79 + 83 + 89 + 97 + 101 + 103 + 107 + 109), Harshad number.
  • 913 = 11 × 83, Smith number,<ref name=":1">{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref> Mertens function(913) returns 0.

  • 914 = 2 × 457, nontotient, number of compositions of 11 that are neither weakly increasing nor weakly decreasing <ref>Template:Cite OEIS</ref>
  • 915 = 3 × 5 × 61, sphenic number, Smith number,<ref name=":1" /> Mertens function(915) returns 0, Harshad number
  • 916 = 22 × 229, Mertens function(916) returns 0, nontotient, strobogrammatic, member of the Mian–Chowla sequence<ref>{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref>

  • 917 = 7 × 131, sum of five consecutive primes (173 + 179 + 181 + 191 + 193)
  • 918 = 2 × 33 × 17, Harshad number
  • 919 = prime number, cuban prime,<ref>{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref> prime index prime, Chen prime, palindromic prime, centered hexagonal number,<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> Mertens function(919) returns 0

920sEdit

  • 920 = 23 × 5 × 23, Mertens function(920) returns 0, total number of nodes in all rooted trees with 8 nodes <ref>Template:Cite OEIS </ref>
  • 921 = 3 × 307, number of enriched r-trees of size 7 <ref>Template:Cite OEIS</ref>
  • 922 = 2 × 461, nontotient, Smith number<ref name=":1" />
  • 923 = 13 × 71, number of combinations of 6 things from 1 to 6 at a time <ref>Template:Cite OEIS</ref>
  • 924 = 22 × 3 × 7 × 11, sum of a twin prime (461 + 463), central binomial coefficient <math>\tbinom {12} 6</math><ref>{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref>

|CitationClass=web }}</ref> centered square number<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

|CitationClass=web }}</ref>

  • 928 = 25 × 29, sum of four consecutive primes (227 + 229 + 233 + 239), sum of eight consecutive primes (101 + 103 + 107 + 109 + 113 + 127 + 131 + 137), happy number
  • 929 = prime number, Proth prime,<ref>{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref> palindromic prime, sum of nine consecutive primes (83 + 89 + 97 + 101 + 103 + 107 + 109 + 113 + 127), Eisenstein prime with no imaginary part

930sEdit

  • 930 = 2 × 3 × 5 × 31, pronic number<ref name=":2">{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref>

  • 931 = 72 × 19; sum of three consecutive primes (307 + 311 + 313); double repdigit, 11130 and 77711; number of regular simple graphs spanning 7 vertices <ref>Template:Cite OEIS</ref>
  • 932 = 22 × 233, number of regular simple graphs on 7 labeled nodes <ref>Template:Cite OEIS</ref>
  • 933 = 3 × 311
  • 934 = 2 × 467, nontotient
  • 935 = 5 × 11 × 17, sphenic number, Lucas–Carmichael number,<ref>{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref> Harshad number

|CitationClass=web }}</ref> Harshad number

  • 937 = prime number, Chen prime, star number,<ref>{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref> happy number

  • 938 = 2 × 7 × 67, sphenic number, nontotient, number of lines through at least 2 points of an 8 × 8 grid of points <ref>Template:Cite OEIS</ref>
  • 939 = 3 × 313, number of V-toothpicks after 31 rounds of the honeycomb sequence <ref>Template:Cite OEIS</ref>

940sEdit

  • 940 = 22 × 5 × 47, totient sum for first 55 integers
  • 941 = prime number, sum of three consecutive primes (311 + 313 + 317), sum of five consecutive primes (179 + 181 + 191 + 193 + 197), Chen prime, Eisenstein prime with no imaginary part
  • 942 = 2 × 3 × 157, sphenic number, sum of four consecutive primes (229 + 233 + 239 + 241), nontotient, convolved Fibonacci number <ref>Template:Cite OEIS</ref>
  • 943 = 23 × 41
  • 944 = 24 × 59, nontotient, Lehmer-Comtet number<ref>Template:Cite OEIS</ref>
  • 945 = 33 × 5 × 7, double factorial of 9,<ref>{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref> smallest odd abundant number (proper divisors add up to more than 975);<ref>Template:Cite book</ref> smallest odd primitive abundant number;<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> smallest odd primitive semiperfect number;<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> Leyland number<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

|CitationClass=web }}</ref> happy number

  • 947 = prime number, sum of seven consecutive primes (113 + 127 + 131 + 137 + 139 + 149 + 151), balanced prime,<ref name=":3">{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref> Chen prime, lazy caterer number, Eisenstein prime with no imaginary part

  • 948 = 22 × 3 × 79, nontotient, forms a Ruth–Aaron pair with 949 under second definition, number of combinatory separations of normal multisets of weight 6.<ref>Template:Cite OEIS</ref>
  • 949 = 13 × 73, forms a Ruth–Aaron pair with 948 under second definition

950sEdit

|CitationClass=web }}</ref>

    • one of two ISBN Group Identifiers for books published in Finland
  • 952 = 23 × 7 × 17, number of reduced words of length 3 in the Weyl group D_17,<ref>Template:Cite OEIS</ref> number of regions in regular tetradecagon with all diagonals drawn. <ref>Template:Cite OEIS</ref>
    • 952 is also 9-5-2, a card game similar to bridge.
    • one of two ISBN Group Identifiers for books published in Finland
  • 953 = prime number, Sophie Germain prime,<ref>{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref> Chen prime, Eisenstein prime with no imaginary part, centered heptagonal number<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

    • ISBN Group Identifier for books published in Croatia
  • 954 = 2 × 32 × 53, sum of ten consecutive primes (73 + 79 + 83 + 89 + 97 + 101 + 103 + 107 + 109 + 113), nontotient, Harshad number, sixth derivative of x^(x^x) at x=1.<ref>Template:Cite OEIS</ref>
  • 955 = 5 × 191, number of transitive rooted trees with 17 nodes
    • ISBN Group Identifier for books published in Sri Lanka
  • 956 = 22 × 239, number of compositions of 13 into powers of 2.<ref>(sequence A023359 in the OEIS)</ref>
    • ISBN Group Identifier for books published in Chile
  • 957 = 3 × 11 × 29, sphenic number, antisigma(45)<ref>Template:Cite OEIS</ref>
    • one of two ISBN Group Identifiers for books published in Taiwan and China
  • 958 = 2 × 479, nontotient, Smith number<ref name=":1" />
  • 959 = 7 × 137, composite de Polignac number<ref>{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref>

    • ISBN Group Identifier for books published in Cuba

960sEdit

  • 960 = 26 × 3 × 5, sum of six consecutive primes (149 + 151 + 157 + 163 + 167 + 173), Harshad number
    • country calling code for Maldives, ISBN Group Identifier for books published in Greece
    • The number of possible starting positions for the chess variant Chess960
  • 961 = 312, the largest 3-digit perfect square, sum of three consecutive primes (313 + 317 + 331), sum of five consecutive primes (181 + 191 + 193 + 197 + 199), centered octagonal number<ref>{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref>

    • country calling code for Lebanon, ISBN Group Identifier for books published in Slovenia
  • 962 = 2 × 13 × 37, sphenic number, nontotient
    • country calling code for Jordan, one of two ISBN Group Identifiers for books published in Hong Kong
  • 963 = 32 × 107, sum of the first twenty-four primes
    • country calling code for Syria, ISBN Group Identifier for books published in Hungary
  • 964 = 22 × 241, sum of four consecutive primes (233 + 239 + 241 + 251), nontotient, totient sum for first 56 integers
    • country calling code for Iraq, ISBN Group Identifier for books published in Iran, happy number
  • 965 = 5 × 193
    • country calling code for Kuwait, ISBN Group Identifier for books published in Israel
  • 966 = 2 × 3 × 7 × 23 = <math>\left\{ {8 \atop 3} \right\}</math>, sum of eight consecutive primes (103 + 107 + 109 + 113 + 127 + 131 + 137 + 139), Harshad number
    • country calling code for Saudi Arabia, one of two ISBN Group Identifiers for books published in Ukraine
  • 967 = prime number, prime index prime
    • country calling code for Yemen, one of two ISBN Group Identifiers for books published in Malaysia
  • 968 = 23 × 112, nontotient, Achilles number, area of a square with diagonal 44<ref name = "area of a square with diagonal 2n">Template:Cite OEIS</ref>
    • country calling code for Oman, one of two ISBN Group Identifiers for books published in Mexico
  • 969 = 3 × 17 × 19, sphenic number, nonagonal number,<ref>{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref> tetrahedral number<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

970sEdit

  • 970 = 2 × 5 × 97, sphenic number, heptagonal number
    • country calling code for Palestinian territories, one of two ISBN Group Identifiers for books published in Mexico
  • 971 = prime number, Chen prime, Eisenstein prime with no imaginary part
    • country calling code for United Arab Emirates, ISBN Group Identifier for books published in the Philippines
  • 972 = 22 × 35, Harshad number, Achilles number
    • country calling code for Israel, one of two ISBN Group Identifiers for books published in Portugal
      • The Sum of Anti-Factors of 972 = number * (n/2) where n is an Odd number. So, it is a Hemi-Anti-Perfect Number. Other such Numbers include 2692, etc.

972 has Anti-Factors = 5, 8, 24, 29, 67, 72, 216, 389, 648

Sum of Anti-Factors = 5 + 8 + 24 + 29 + 67 + 72 + 216 + 389 + 648 = 1458 = 972 * 3/2

  • 973 = 7 × 139, happy number
    • country calling code for Bahrain, ISBN Group Identifier for books published in Romania,
  • 974 = 2 × 487, nontotient, 974! - 1 is prime<ref>{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref>

    • country calling code for Qatar, ISBN Group Identifier for books published in Thailand
  • 975 = 3 × 52 × 13
    • country calling code for Bhutan, ISBN Group Identifier for books published in Turkey
  • 976 = 24 × 61, decagonal number<ref>{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref>

|CitationClass=web }}</ref> strictly non-palindromic number<ref name=":4">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

    • country calling code for Nepal
    • EAN prefix for ISSNs
    • ISBN Group Identifier for books published in Egypt
  • 978 = 2 × 3 × 163, sphenic number, nontotient, number of secondary structures of RNA molecules with 11 nucleotides<ref>Template:Cite OEIS</ref>
    • First EAN prefix for ISBNs
    • ISBN Group Identifier for books published in Nigeria
  • 979 = 11 × 89, the sum of the five smallest fourth powers: <math>979=\sum_{n=1}^{5}n^4</math>
    • Second EAN prefix for ISBNs. Also for ISMNs
    • ISBN Group Identifier for books published in Indonesia

980sEdit

  • 980 = 22 × 5 × 72, number of ways to tile a hexagon of edge 3 with calissons of side 1.<ref>{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref>

|CitationClass=web }}</ref> Chen prime, Eisenstein prime with no imaginary part, Wedderburn–Etherington number,<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> strictly non-palindromic number<ref name=":4" />

    • One of two ISBN Group Identifiers for books published in Malaysia
  • 984 = 23 × 3 × 41
    • ISBN Group Identifier for books published in Bangladesh
  • 985 = 5 × 197, sum of three consecutive primes (317 + 331 + 337), Markov number,<ref>{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref> Pell number,<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> Smith number<ref name=":1" />

    • one of two ISBN Group Identifiers for books published in Belarus
  • 986 = 2 × 17 × 29, sphenic number, nontotient, strobogrammatic, number of unimodal compositions of 14 where the maximal part appears once<ref>Template:Cite OEIS</ref>
    • one of two ISBN Group Identifiers for books published in Taiwan and China
  • 987 = 3 × 7 × 47, sphenic number, Fibonacci number,<ref>{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref> number of partitions of 52 into prime parts

    • one of two ISBN Group Identifiers for books published in Argentina
  • 988 = 22 × 13 × 19, nontotient. sum of four consecutive primes (239 + 241 + 251 + 257). A cake number.
  • 989 = 23 × 43, Extra strong Lucas pseudoprime<ref>{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref>

    • one of two ISBN Group Identifiers for books published in Portugal

990sEdit

  • 990 = 2 × 32 × 5 × 11, sum of six consecutive primes (151 + 157 + 163 + 167 + 173 + 179), 44th triangular number,<ref name=":0" /> Harshad number
  • 991 = prime number, sum of five consecutive primes (191 + 193 + 197 + 199 + 211), sum of seven consecutive primes (127 + 131 + 137 + 139 + 149 + 151 + 157), Chen prime, lucky prime, prime index prime
  • 992 = 25 × 31, pronic number,<ref name=":2" /> nontotient; number of eleven-dimensional exotic spheres.<ref>{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref>

    • country calling code for Tajikistan
  • 993 = 3 × 331
    • country calling code for Turkmenistan
  • 994 = 2 × 7 × 71, sphenic number, nontotient, number of binary words of length 13 with all distinct runs.<ref>{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref>

    • country calling code for Azerbaijan
  • 995 = 5 × 199
    • country calling code for Georgia
    • Singapore fire brigade and emergency ambulance services hotline, Brunei Darussalam fire service emergency number
  • 996 = 22 × 3 × 83
    • country calling code for Kyrgyzstan
  • 997 = largest three-digit prime number, strictly non-palindromic number.<ref name=":4" /> It is also a lucky prime.
  • 998 = 2 × 499, nontotient, number of 7-node graphs with two connected components.<ref>{{#invoke:citation/CS1|citation

|CitationClass=web }}</ref>

    • country calling code for Uzbekistan

{{#invoke:Labelled list hatnote|labelledList|Main article|Main articles|Main page|Main pages}}

|CitationClass=web }}</ref> Harshad number

ReferencesEdit

Template:Sister project Template:Reflist

Template:Integers