Diprotodon
Template:Short description Template:Good article Template:Use dmy dates Template:Use Australian English Template:Automatic taxobox
Diprotodon (Ancient Greek: "two protruding front teeth") is an extinct genus of marsupial from the Pleistocene of Australia containing one species, D. optatum. The earliest finds date to 1.77 million to 780,000 years ago but most specimens are dated to after 110,000 years ago. Its remains were first unearthed in 1830 in Wellington Caves, New South Wales, and contemporaneous paleontologists guessed they belonged to rhinos, elephants, hippos or dugongs. Diprotodon was formally described by English naturalist Richard Owen in 1838, and was the first named Australian fossil mammal, and led Owen to become the foremost authority of his time on other marsupials and Australian megafauna, which were enigmatic to European science.
Diprotodon is the largest-known marsupial to have ever lived; it greatly exceeds the size of its closest living relatives wombats and koalas. It is a member of the extinct family Diprotodontidae, which includes other large quadrupedal herbivores. It grew to Template:Cvt at the shoulders, over Template:Cvt from head to tail, and likely weighed several tonnes, possibly as much as Template:Cvt. Females were much smaller than males. Diprotodon supported itself on elephant-like legs to travel long distances, and inhabited most of Australia. The digits were weak; most of the weight was probably borne on the wrists and ankles. The hindpaws angled inward at 130°. Its jaws may have produced a strong bite force of Template:Convert at the long and ever-growing incisor teeth, and over Template:Convert at the last molar. Such powerful jaws would have allowed it to eat vegetation in bulk, crunching and grinding plant materials such as twigs, buds and leaves of woody plants with its bilophodont teeth.
It is the only marsupial and metatherian that is known to have made seasonal migrations. Large herds, usually of females, seem to have marched through a wide range of habitats to find food and water, walking at around Template:Cvt. Diprotodon may have formed polygynous societies, possibly using its powerful incisors to fight for mates or fend off predators, such as the largest-known marsupial carnivore Thylacoleo carnifex. Being a marsupial, the mother may have raised her joey in a pouch on her belly, probably with one of these facing backwards, as in wombats.
Diprotodon went extinct about 40,000 years ago as part of the Late Pleistocene megafauna extinctions, along with every other Australian mammal over Template:Cvt; the extinction was possibly caused by extreme drought conditions and predation pressure from the first Aboriginal Australians, who likely co-existed with Diprotodon and other megafauna in Australia for several thousand years prior to its extinction. There is little direct evidence of interactions between Aboriginal Australians and Diprotodon—or most other Australian megafauna. Diprotodon has been conjectured by some authors to have been the origin of some aboriginal mythological figures—most notably the bunyip—and aboriginal rock artworks, but these ideas are unconfirmable.
Research historyEdit
In 1830, farmer George Ranken found a diverse fossil assemblage while exploring Wellington Caves, New South Wales, Australia.<ref>Template:Cite book</ref> This was the first major site of extinct Australian megafauna. Remains of Diprotodon were excavated when Ranken later returned as part of a formal expedition that was headed by explorer Major Thomas Mitchell.<ref name="Holden"/>
At the time these massive fossils were discovered, it was generally thought they were remains of rhinos, elephants, hippos, or dugongs. The fossils were not formally described until Mitchell took them in 1837 to his former colleague English naturalist Richard Owen while in England publishing his journal.<ref name="Holden">Template:Cite book</ref> In 1838, while studying a piece of a right mandible with an incisor, Owen compared the tooth to those of wombats and hippos; he wrote to Mitchell designating it as a new genus Diprotodon. Mitchell published the correspondence in his journal.<ref>Template:Cite book</ref> Owen formally described Diprotodon in Volume 2 without mentioning a species; in Volume 1, however, he listed the name Diprotodon optatum, making that the type species.Template:Sfn Diprotodon means "two protruding front teeth" in Ancient Greek<ref name="Holden"/> and optatum is Latin for "desire" or "wish".<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> It was the first-ever Australian fossil mammal to be described.Template:Efn<ref name="Holden"/> In 1844, Owen replaced the name D. optatum with "D. australis".<ref name=Owen1844>Template:Cite journal</ref> Owen only once used the name optatum and the acceptance of its apparent replacement "australis" has historically varied widelyTemplate:Sfn but optatum is now standard.<ref name=Price2008/>
In 1843, Mitchell was sent more Diprotodon fossils from the recently settled Darling Downs and relayed them to Owen. With these, Owen surmised that Diprotodon was an elephant related to or synonymous with Mastodon or Deinotherium, pointing to the incisors which he interpreted as tusks, the flattening (anteroposterior compression) of the femur similar to the condition in elephants and rhinos, and the raised ridges of the molar characteristic of elephant teeth. Later that year, he formally synonymised Diprotodon with Deinotherium as Dinotherium Australe,<ref name=Owen1873>Template:Cite magazine</ref> which he recanted in 1844 after German naturalist Ludwig Leichhardt pointed out that the incisors clearly belong to a marsupial.<ref name=Fensham2013>Template:Cite journal</ref> Owen still classified the molars from Wellington as Mastodon australis and continued to describe Diprotodon as likely elephantine.<ref name=Owen1844/> In 1847, a nearly complete skull and skeleton was recovered from the Darling Downs, the latter confirming this elephantine characterisation.<ref name=Fensham2013/> The massive skeleton attracted a large audience while on public display in Sydney.Template:Efn Leichhardt believed the animal was aquatic, and in 1844 he said it might still be alive in an undiscovered tropical area nearer the interior. But, as the European land exploration of Australia progressed, he became certain it was extinct.<ref>Template:Cite book</ref> Owen later become the foremost authority of Australian palaeontology of his time, mostly working with marsupials.Template:Sfn
Huge assemblages of mostly-complete Diprotodon fossils have been unearthed in dry lakes and riverbeds;<ref name=Price2008/> the largest assemblage came from Lake Callabonna, South Australia.<ref name="Gillespie2008" /> Fossils were first noticed here by an aboriginal stockman working on a sheep property to the east. The owners, the Ragless brothers, notified the South Australian Museum, which hired Australian geologist Henry Hurst, who reported an enormous wealth of fossil material and was paid £250 in 1893 to excavate the site. Hurst found up to 360 Diprotodon individuals over a few acres; excavation was restarted in the 1970s and more were uncovered. American palaeontologist Richard H. Tedford said multiple herds of these animals had at different times become stuck in mud while crossing bodies of water while water levels were low during dry seasons.<ref>Template:Cite journal</ref>
In addition to D. optatum, several other species were erected in the 19th century, often from single specimens, on the basis of subtle anatomical variations.<ref name=Price2008/> Among the variations was size difference: adult Diprotodon specimens have two distinct size ranges. In their 1975 review of Australian fossil mammals, Australian palaeontologists J. A. Mahoney and William David Lindsay Ride did not ascribe this to sexual dimorphism because males and females of modern wombat and koala species—its closest living relatives—are skeletally indistinguishable,Template:Efn so they assumed the same would have been true for extinct relatives, including Diprotodon.Template:Sfn These other species are:
- D. annextans was erected in 1861 by Irish palaeontologist Frederick McCoy based on some teeth and a partial mandible found near Colac, Victoria; the name may be a typo of annectens, which means linking or joining, because he characterised the species as combining traits from Diprotodon and Nototherium;Template:Sfn
- D. minor was erected in 1862 by Thomas Huxley based on a partial palate;<ref name=Huxley1862/>Template:Sfn in 1991, Australian palaeontologist Peter Murray suggested classifying large specimens as D. optatum and smaller ones as "D. minor";<ref name=Price2008/>
- D. longiceps was erected in 1865 by McCoy as a replacement for "D. annextans";Template:Sfn
- D. bennettii was erected in 1873 by German naturalist Gerard Krefft based on a nearly complete mandible collected by naturalists George Bennet and Georgina King near Gowrie, New South Wales;Template:Sfn and
- D. loderi was erected in 1873 by Krefft based on a partial palate collected by Andrew Loder near Murrurundi, New South Wales.Template:Sfn
In 2008, Australian palaeontologist Gilbert Price opted to recognise only one species D. optatum based most-notably on a lack of dental differences among these supposed species, and said it was likely Diprotodon was indeed sexually dimorphic, with the male probably being the larger form.<ref name=Price2008>Template:Cite journal</ref>
ClassificationEdit
PhylogenyEdit
Diprotodon is a marsupial in the order Diprotodontia,Template:Efn suborder Vombatiformes (wombats and koalas), and infraorder Vombatomorphia (wombats and allies). It is unclear how different groups of vombatiformes are related to each other because the most-completely known members—living or extinct—are exceptionally derived (highly specialised forms that are quite different from their last common ancestor).<ref name=Beck2020/>
In 1872, American mammalogist Theodore Gill erected the superfamily Diprotodontoidea and family Diprotodontidae to house Diprotodon.<ref>Template:Cite book</ref> New species were later added to both groups; by the 1960s, the first diprotodontoids dating to before the Pliocene were discovered, better clarifying their relationship to each other. Because of this, in 1967, American palaeontologist Ruben A. Stirton subdivided Diprotodontoidea into one family, Diprotodontidae, with four subfamilies; Diprotodontinae (containing Diprotodon among others), Nototheriinae, Zygomaturinae, and Palorchestinae.<ref>Template:Cite journal</ref> In 1977, Australian palaeontologist Michael Archer synonymised Nototheriinae with Diprotodontinae<ref name=Archer1977>Template:Cite journal</ref> and in 1978, Archer and Australian palaeontologist Alan Bartholomai elevated Palorchestinae to family level as Palorchestidae, leaving Diprotodontoidea with families Diprotodontidae and Palorchestidae; and Diprotodontidae with subfamilies Diprotodontinae and Zygomaturinae.<ref>Template:Cite journal</ref>
Below is the Diprotodontoidea family tree according to Australian palaeontologists Karen H. Black and Brian Mackness, 1999 (top),<ref name=Black1999/> and Vombatiformes family tree according to Beck et al. 2020 (bottom):<ref name=Beck2020/>
EvolutionEdit
Diprotodontidae is the most diverse family in Vombatomorphia; it was better adapted to the spreading dry, open landscapes over the last tens of millions of years than other groups in the infraorder, living or extinct.<ref>Template:Cite journal</ref> Diprotodon has been found in every Australian state, making it the most-widespread Australian megafauna in the fossil record.Template:Efn<ref name=Price2021/> The oldest vombatomorph (and vombatiform) is Mukupirna, which was identified in 2020 from Oligocene deposits of the South Australian Namba Formation dating to 26–25 million years ago. The group probably evolved much earlier; Mukupirna was already differentiated as a closer relative to wombats than other vombatiformes, and attained a massive size of roughly Template:Cvt, whereas the last common ancestor of vombatiformes was probably a small, Template:Cvt creature.<ref name=Beck2020>Template:Cite journal</ref>
Both diprotodontines and zygomaturines were both apparently quite diverse over the Late Oligocene to Early Miocene, roughly 23 million years ago, though the familial and subfamilial classifications of diprotodontoids from this period is debated. Compared to zygomaturines, diprotodontines were rare during the Miocene, the only identified genus being Pyramios.<ref name=Black1999/> By the Late Miocene, diprotodontians became the commonest marsupial order in fossil sites, a dominance that endures to the present day; at this point, the most-prolific diprotodontians were diprotodontids and kangaroos. Diprotodontidae also began a gigantism trend, along with several other marsupials, probably in response to the lower-quality plant foods available in a drying climate, requiring them to consume much more.<ref name=Black2012>Template:Cite book</ref><ref name=Black1999/> Gigantism appears to have evolved independently six times among the vombatiform lineages.<ref name=Beck2020/> Diprotodontine diversity returned in the Pliocene; Diprotodontidae reached peak diversity with seven genera,<ref name=Black1999>Template:Cite journal</ref> coinciding with the spread of open forests.<ref name=Black2012/> In 1977, Archer said Diprotodon directly evolved from the smaller Euryzygoma,<ref name=Archer1977/> which has been discovered in Pliocene deposits of eastern Australia predating 2.5 million years ago.<ref name=Price2009/>
In general, there is poor resolution on the ages of Australian fossil sites. While the geochronology of Diprotodon is one of best for Australian megafauna, it is still incomplete and the majority of remains are undated.<ref name=Price2021>Template:Cite journal</ref> Price and Australian palaeontologist Katarzyna Piper reported the earliest, indirectly dated Diprotodon fossils from the Nelson Bay Formation at Nelson Bay, New South Wales, which dates to 1.77 million to 780,000 years ago during the Early Pleistocene. These remains are 8–17% smaller than those of Late Pleistocene Diprotodon but are otherwise indistinguishable.Template:Efn<ref name=Price2009>Template:Cite journal</ref> The oldest directly dated Diprotodon fossils come from the Boney Bite site at Floraville, New South Wales; they were deposited approximately 340,000 years ago during the Middle Pleistocene based on U-series dating and luminescence dating of quartz and orthoclase. Floraville is the only-identified Middle Pleistocene site in tropical northern Australia.<ref name=Price2021/> Beyond these, almost all dated Diprotodon material comes from Marine Isotope Stage 5 (MIS5) or younger—after 110,000 years ago during the Late Pleistocene.<ref name=Price2009/>
DescriptionEdit
SkullEdit
Diprotodon has a long, narrow skull.Template:Sfn Like other marsupials, the top of the skull of Diprotodon is flat or depressed over the small braincase and the sinuses of the frontal bone.Template:Sfn Like many other giant vombatiformes, the frontal sinuses are extensive; in a specimen from Bacchus Marsh, they take up Template:Cvt—roughly 25% of skull volume—whereas the brain occupies Template:Cvt—only 4% of the skull volume. Marsupials tend to have smaller brain-to-body mass ratios than placental mammals, becoming more disparate the bigger the animal, which could be a response to a need to conserve energy because the brain is a calorically expensive organ, or is proportional to the maternal metabolic rate, which is much less in marsupials due to the shorter gestation period. The expanded sinuses increase the surface area available for the temporalis muscle to attach, which is important for biting and chewing, to compensate for a deflated braincase as a result of a proportionally smaller brain.<ref>Template:Cite journal</ref> They may also have helped dissipate stresses produced by biting more efficiently across the skull.<ref name="Sharpe2016">Template:Cite journal</ref>
The occipital bone, the back of the skull, slopes forward at 45 degrees unlike most modern marsupials, where it is vertical. The base of the occipital is significantly thickened. The occipital condyles, a pair of bones that connect the skull with the vertebral column, are semi-circular and the bottom half is narrower than the top. The inner border, which forms the foramen magnum where the spinal cord feeds through, is thin and well-defined. The top margin of the foramen magnum is somewhat flattened rather than arched. The foramen expands backwards towards the inlet, especially vertically, and is more-reminiscent of a short neural canal—the tube running through a vertebral centrum where the spinal cord passes through—than a foramen magnum.Template:Sfn
A sagittal crest extends across the midline of the skull from the supraoccipital—the top of the occipital bone—to the region between the eyes on the top of the head. The orbit (eye socket) is small and vertically oval-shaped. The nasal bones slightly curve upwards until near their endpoint, where they begin to curve down, giving the bones a somewhat S-shaped profile. Like many marsupials, most of the nasal septum is made of bone rather than cartilage. The nose would have been quite mobile. The height of the skull from the peak of the occipital bone to the end of the nasals is strikingly almost uniform; the end of the nasals is the tallest point. The zygomatic arch (cheek bone) is strong and deep as in kangaroos but unlike those of koalas and wombats, and extends all the way from the supraoccipital.Template:Sfn
JawsEdit
As in kangaroos and wombats, there is a gap between the jointing of the palate (roof of the mouth) and the maxilla (upper jaw) behind the last molar, which is filled by the medial pterygoid plate.Template:Sfn This would have been the insertion for the medial pterygoid muscle that was involved in closing the jaw. Like many grazers, the masseter muscle, which is also responsible for closing the jaw, seems to have been the dominant jaw muscle. A probable large temporal muscle compared to the lateral pterygoid muscle may indicate, unlike in wombats, a limited range of side-to-side jaw motion means Diprotodon would have been better at crushing rather than grinding food. The insertion of the masseter is placed forwards, in front of the orbits, which could have allowed better control over the incisors. DiprotodonTemplate:'s chewing strategy appears to align more with kangaroos than wombats: a powerful vertical crunch was followed by a transverse grinding motion.<ref name=Sharp2014>Template:Cite journal</ref>
As in other marsupials, the ramus of the mandible, the portion that goes up to connect with the skull, angles inward. The condyloid process, which connects the jaw to the skull, is similar to that of a koala. The ramus is straight and extends almost vertically, thickening as it approaches the body of the mandible where the teeth are. The depth of the body of the mandible increases from the last molar to the first. The strong mandibular symphysis, which fuses the two halves of the mandible, begins at the front-most end of the third molar;Template:Sfn this would prevent either half of the mandible from moving independently of the other, unlike in kangaroos which use this ability to better control their incisors.<ref name=Sharp2014/>
TeethEdit
The dental formula of Diprotodon is Template:DentalFormula. In each half of either jaw are three incisors in the upper jaw and one in the lower jaw; there are one premolar and four molars in both jaws but no canines. A long diastema (gap) separates the incisors from the molars.Template:Sfn
The incisors are scalpriform (chisel-like). Like those of wombats and rodents, the first incisors in both jaws continuously grew throughout the animal's life but the other two upper incisors did not. This combination is not seen in any living marsupial. The cross-section of the upper incisors is circular. In one old male specimen, the first upper incisor measures Template:Cvt of which Template:Cvt is within the tooth socket; the second is Template:Cvt and Template:Cvt is in the socket; and the exposed part of the third is Template:Cvt. The first incisor is convex and curves outwards but the other two are concave.Template:Sfn The lower incisor has a faint upward curve but is otherwise straight and has an oval cross-section. In the same old male specimen, the lower incisor measures Template:Cvt, of which Template:Frac is inside the socket.Template:Sfn
The premolars and molars are bilophodont, each having two distinct lophs (ridges). The premolar is triangular and about half the size of the molars.<ref name=Huxley1862>Template:Cite journal</ref> As in kangaroos, the necks of the lophs are coated in cementum. Unlike in kangaroos, there is no connecting ridge between the lophs. The peaks of these lophs have a thick enamel coating that thins towards the base; this could wear away with use and expose the dentine layer, and beneath that osteodentine.Template:Sfn Like the first premolar of other marsupials, the first molar of Diprotodon and wombats is the only tooth that is replaced.Template:Sfn D. optatum premolars were highly morphologically variable even within the same individual.<ref>Template:Cite journal</ref>
VertebraeEdit
Diprotodon had seven cervical (neck) vertebrae.<ref>Template:Cite book</ref> The atlas, the first cervical (C1), has a pair of deep cavities for insertion of the occipital condyles. The diaphophyses of the atlas, an upward-angled projection on either the side of the vertebra, are relatively short and thick, and resemble those of wombats and koalas. The articular surface of the axis (C2), the part that joints to another vertebra, is slightly concave on the front side and flat on the back side. As in kangaroos, the axis has a low subtriangular hypophysis projecting vertically from the underside of the vertebra and a proportionally long odontoid—a projection from the axis which fits into the atlas—but the neural spine, which projects vertically the topside of the vertebra, is more forwards. The remaining cervicals lack a hypophysis. As in kangaroos, C3 and C4 have a shorter and more-compressed neural spine, which is supported by a low ridge along its midline in the front and the back. The neural spine of C5 is narrower but thicker, and is supported by stronger-but-shorter ridges.Template:Sfn C7 had a forked shape on top of the neural spine.<ref>Template:Cite book</ref>
Diprotodon probably had 13 dorsal vertebrae and 14 pairs of closely spaced ribs.Template:Sfn Like many other mammals, the dorsals initially decrease in breadth and then expand before connecting to the lumbar vertebrae. Unusually, the front dorsals match the short proportions of the cervicals, and the articular surface is flat. At the beginning of the series, the neural spine is broad and angled forward, and is also supported by a low ridge along its midline in the front and the back. In later examples, the neural spine is angled backwards and bifurcates (splits into two). Among mammals, bifurcation of the neural spine is only seen in elephants and humans, and only in a few of the cervicals and not in the dorsals. Compared to those of wombats and kangaroos, the neural arch is proportionally taller. As in elephants, the epiphysial plates (growth plates) and the neural arch, to which the neural spine is attached, are anchylosed—very rigid in regard to the vertebral centrum—which served to support the animal's immense weight.Template:Sfn
Like most marsupials, Diprotodon likely had six lumbar vertebrae.Template:Efn They retain a proportionally tall neural arch but not the diapophyses, though L1 can retain a small protuberance on one side where a diapophysis would be in a dorsal vertebra; this has been documented in kangaroos and other mammals. The length of each vertebra increases along the series so the lumbar series may have bent downward.Template:Sfn
Like other marsupials, Diprotodon had two sacral vertebrae. The base of the neural spines of these two were ossified (fused) together.Template:Sfn
LimbsEdit
GirdlesEdit
The general proportions of the scapula (shoulder blade) align more closely with more-basal vertebrates such as monotremes, birds, reptiles, and fish rather than marsupials and placental mammals. It is triangular and proportionally narrow but unlike most mammals with a triangular scapula, the arm attaches to top of the scapula and the subspinous fossa (the fossa, a depression below the spine of the scapula) becomes bigger towards the arm joint rather than decreasing. The glenoid cavity where the arm connects is oval shaped as in most mammals.Template:Sfn
Unlike other marsupials, the ilia, the large wings of the pelvis, are lamelliform (short and broad, with a flat surface instead of an iliac fossa). Lamelliform ilia have only been recorded in elephants, sloths, and apes, though these groups all have a much-longer sacral vertebra series whereas marsupials are restricted to two sacral vertebrae. The ilia provided strong muscle attachments that were probably oriented and used much the same as those in an elephant. The sacroiliac joint where the pelvis connects to the spine is at 35 degrees in reference to the long axis of the ilium. The ischia, which form part of the hip socket, are thick and rounded tailwards but taper and diverge towards the socket, unlike those in kangaroos, where the ischia proceed almost parallel to each other. They were not connected to the vertebra. The hip socket itself is well-rounded and almost hemispherical.Template:Sfn
Long bonesEdit
Unlike those of most marsupials, the humerus of Diprotodon is almost straight rather than S-shaped, and the trochlea of the humerus at the elbow joint is not perforated. The ridges for muscle attachments are poorly developed, which seems to have been compensated for by the powerful forearms. Similarly, the condyles where the radius and ulna (the forearm bones) connect maintain their rounded shape and are quite-similarly sized, and unusually reminiscent of the condyles between the femur and the tibia and fibula in the leg of a kangaroo.Template:Sfn
Template:Multiple image Like elephants, the femur of Diprotodon is straight and compressed anteroposteriorly (from headside to tailside). The walls of the femur are prodigiously thickened, strongly constricting the medullary cavity where the bone marrow is located. The proximal end (part closest to the hip joint) is notably long, broad, and deep. The femoral head projects up far from the greater trochanter. As in kangaroos, the greater trochanter is split into two lobes. The femoral neck is roughly the same diameter as the femoral head. Also as in kangaroos, the condyle for the fibula is excavated out but the condyle for the tibia is well-rounded and hemispherical. Like those of many other marsupials, the tibia is twisted and the tibial malleolus (on the ankle) is reduced.Template:Sfn
PawsEdit
Diprotodon has five digits on either paw. Like other plantigrade walkers, where the paws were flat on the ground, the wrist and ankle would have been largely rigid and inflexible.<ref name=Stirling1899/><ref name=Weisbecker2008/> The digits are proportionally weak so the paws probably had a lot of padding.Template:Sfn Similarly, the digits do not seem to have been much engaged in weight bearing.<ref name=Weisbecker2008/><ref name=Carey2011/>
The forepaw was strong and the shape of the wrist bones is quite similar to those of kangaroos. Like other vombatiformes, the metacarpals, which connect the fingers to the wrist, are broadly similar to those of kangaroos and allies.<ref name=Weisbecker2008>Template:Cite journal</ref> The enlarged pisiform bone takes up half the jointing surface of the ulna. The fifth digit on the forepaw is the largest.<ref name=Stirling1899>Template:Cite book</ref>
The digits of the hindpaws turn inwards from the ankle at 130 degrees. The second and third metatarsals (the metatarsals connect the toes to the ankle) are significantly reduced, which may mean these digits were syndactylous (fused) like those of all modern diprotodontians. The first, fourth, and fifth digits are enlarged. The toes are each about the same length, except the fifth which is much stouter.<ref>Template:Cite journal</ref>
SizeEdit
Diprotodon is the largest-known marsupial to ever have lived.<ref name=Price2009/> In life, adult Diprotodon could have reached Template:Cvt at the shoulders and Template:Cvt from head to tail.Template:Sfn Accounting for cartilaginous intervertebral discs, Diprotodon may have been 20% longer than reconstructed skeletons, exceeding Template:Cvt.<ref name = "Wroe2003">Template:Cite journal</ref>
As researchers were formulating predictive body-mass equations for fossil species, efforts were largely constrained to eutherian mammals rather than marsupials.<ref name = "Wroe2003"/> The first person to attempt to estimate the living weight of Diprotodon was Peter Murray in his 1991 review of the megafauna of Pleistocene Australia; Murray made an estimate of Template:Cvt using cranial and dental measurements, which he said was probably not a very precise figure.Template:Sfn This made Diprotodon the largest herbivore in Australia. In 2001, Canadian biologist Gary Burness and colleagues did a linear regression between the largest herbivores and carnivores—living or extinct—from every continent (for Australia: Diprotodon, Varanus priscus, and Thylacoleo carnifex) against the landmass area of their continent, and another regression between the daily food intake of living creatures against the landmass of their continents. He calculated the food requirement of Diprotodon was 50–60% smaller than expected for Australia's landmass, which he believed was a result of a generally lower metabolism in marsupials compared to placentals—up to 20% lower—and sparser nutritious vegetation than other continents. The maximum-attainable body size is capped much lower than those for other continents.<ref>Template:Cite journal</ref>
In 2003, Australian palaeontologist Stephen Wroe and colleagues took a more-sophisticated approach to body mass than Murray's estimate. They made a regression between the minimum circumference of the femora and humeri of 18 quadrupedal marsupials and 32 placentals against body mass, and then inputted 17 Diprotodon long bones into their predictive model. The results ranged from Template:Cvt, for a mean of Template:Cvt, though Wroe said reconstructing the weight of extinct creatures that far outweighed living counterpartsTemplate:Efn is problematic. For comparison, an American bison they used in their study weighed Template:Cvt and a hippo weighed Template:Cvt.<ref name = "Wroe2003"/>
PaleobiologyEdit
DietEdit
Like modern megaherbivores, most evidently the African elephant, Pleistocene Australian megafauna likely had a profound effect on the vegetation, limiting the spread of forest cover and woody plants.<ref>Template:Cite journal</ref> Carbon isotope analysis suggests Diprotodon fed on a broad range of foods and, like kangaroos, was consuming both C3—well-watered trees, shrubs, and grasses—and C4 plants—arid grasses,<ref>Template:Cite journal</ref> a finding replicated by calcium isotope analysis showing Diprotodon to have been a mixed feeder.<ref>Template:Cite journal</ref> Carbon isotope analyses on Diprotodon excavated from the Cuddie Springs site in units SU6 (possibly 45,000 years old) and SU9 (350,000 to 570,000 years old) indicate Diprotodon adopted a somewhat-more-varied seasonal diet as Australia's climate dried but any change was subtle. In contrast, contemporary kangaroos and wombats underwent major dietary shifts or specialisations towards, respectively, C3 and C4 plants.<ref>Template:Cite journal</ref> The fossilised, incompletely digested gut contents of one 53,000-year-old individual from Lake Callabonna show its last meal consisted of young leaves, stalks, and twigs.<ref name=Gillespie2008>Template:Cite journal</ref>
The molars of Diprotodon are a simple bilophodont shape. Kangaroos use their bilophodont teeth to grind tender, low-fibre plants as a browser as well as grass as a grazer. Kangaroos that predominantly graze have specialised molars to resist the abrasiveness of grass but such adaptations are not exhibited in Diprotodon, which may have had a mixed diet similar to that of a browsing wallaby. It may also have chewed like wallabies, beginning with a vertical crunch before grinding transversely, as opposed to wombats, which only grind transversely. Similarly to many large ungulates (hoofed mammals), the jaws of Diprotodon were better suited for crushing rather than grinding, which would have permitted it to process vegetation in bulk.<ref name=Sharp2014/>
In 2016, Australian biologists Alana Sharpe and Thomas Rich estimated the maximum-possible bite force of Diprotodon using finite element analysis. They calculated Template:Cvt at the incisors and Template:Cvt across the molar series.<ref name=Sharpe2016/> For reference, the American alligator can produce forces upwards of Template:Cvt.<ref>Template:Cite journal</ref> Though these are likely overestimates,Template:Efn the jaws of Diprotodon were exceptionally strong, which would have allowed it to consume a broad range of plants, including tough, fibrous grasses.<ref name=Sharpe2016/>
Migration and socialityEdit
In 2017, by measuring the strontium isotope ratio (87Sr/86Sr) at various points along the Diprotodon incisor QMF3452 from the Darling Downs, and matching those ratios to the ratios of sites across that region, Price and colleagues determined Diprotodon made seasonal migrations, probably in search of food or watering holes. This individual appears to have been following the Condamine River and, while apparently keeping to the Darling Downs during the three years this tooth had been growing, it would have been annually making a Template:Cvt northwest-southeast round trip. This trek parallels the mammalian mass migrations of modern-day East Africa.<ref name="Price2017">Template:Cite journal</ref>
Diprotodon is the only identified metatherianTemplate:Efn that seasonally migrated between two places. A few modern marsupials, such as the red kangaroo, have been documented making migrations when necessary but it is not a seasonal occurrence. Because Diprotodon could do it, it is likely other Pleistocene Australian megafauna also had seasonal migrations.<ref name="Price2017"/>
Diprotodon apparently moved in large herds. Possible fossilised herds, which are most-commonly unearthed in south-eastern Australia, seem to be mostly or entirely female, and sometimes travelled with juveniles. Such sexual segregation is normally seen in polygynous species; it is a common social organisation among modern megaherbivores involving an entirely female herd save for their young and the dominant male, with which the herd exclusinvely breeds.<ref name=Price2008/> Similarly, the skull is adapted to handling much-higher stresses than that which resulted from bite alone so Diprotodon may have subjected its teeth or jaws to more-strenuous activities than chewing, such as fighting other Diprotodon for mates or fending off predators, using the incisors.<ref name=Sharpe2016/> Like modern red and grey kangaroos, which also sexually segregate, bachelor herds of Diprotodon seem to have been less tolerant to drought conditions than female herds due to their larger size and nutritional requirements.<ref name=Price2008/>
GaitEdit
The locomotion of an extinct animal can be inferred using fossil trackways, which seldom preserve in Australia over the Cenozoic. Only the trackways of humans, kangaroos, vombatids, Diprotodon, and the diprotodontid Euowenia have been identified.<ref name=Camens2009>Template:Cite journal</ref> Diprotodon trackways have been found at Lake Callabonna<ref>Template:Cite journal</ref> and the Victorian Volcanic Plain grasslands.<ref name=Carey2011>Template:Cite journal</ref><ref>Template:Cite journal</ref> The diprotodontid manus (forepaw) print is semi-circular and the pes (hindpaw) is reniform (kidney-shaped).<ref name=Carey2011/> Owing to proportionally small digits, most of the weight was borne on the carpus and tarsus—the bones connecting to respectively the wrist and the ankle. Diprotodontines seem to have had a much-more-erect gait, an adaptation to long-distance travel that is similar to that of elephants, rather than the more-sprawling posture of wombats and zygomaturines, though there are no fossil trackways of the latter to verify their reconstructed standing posture.<ref name=Camens2009/><ref name=Carey2011/>
At Lake Callabonna, the single Diprotodon responsible for the impressions had an average stride length of Template:Cvt, trackway width of Template:Cvt, and track dimensions Template:Cvt in length x width. The gleno-acetabular length—the distance between the shoulders and pelvis—could have been about Template:Cvt; assuming a hip height of Template:Cvt, the maker of these tracks was probably moving at around Template:Cvt.<ref name=Camens2009/>
The single Diprotodon responsible for the impressions at the volcanic plain had an average stride length of Template:Cvt, trackway width of Template:Cvt, and pes length of Template:Cvt. The gleno-acetabular length may have been about Template:Cvt and assuming a hip height of Template:Cvt, the maker of the tracks was probably moving at around Template:Cvt. Its posture was much-more-sprawled than the example from Callabonna, aligning more with what might be expected of Zygomaturus. The animal may have been a female carrying a large joey in her pouch, the added weight on the stomach altering the gait. The first trackway continues for Template:Cvt in a south-easterly direction towards a palaeo-lake. The animal seems to have hesitated while stepping down from the first sand bar on its path with the right pes making three overlapping prints here while shuffling around. The trackway vanishes for a Template:Cvt stretch and reappears while the animal seemingly is stepping on wet sediment. Another diprotodontid trackway appears Template:Cvt away, moving southerly, which may have been left by the same individual.<ref name=Carey2011/>
Life historyEdit
The marsupial metabolic rate is about 30% lower than that of placentals due to a lower body temperature of Template:Cvt. Marsupials give birth at an earlier point in foetal development, relying on lactation to facilitate most of the joey's development; because pregnancy is much-more-energetically expensive, investing in lactation rather than longer gestation can be advantageous in a highly seasonal and unpredictable climate to minimise maternal nutritional requirements. Consequently, marsupials cannot support as large a litter size or as short a generation time.<ref name=Tyndale2001>Template:Cite journal</ref>
Based on the relationship between female body size and life history in kangaroos, a Template:Cvt Diprotodon female would have gestated for six-to-eight weeks, and given birth to a single Template:Cvt joey. Given its massive size, Diprotodon may not have sat down to give birth as do smaller marsupials, possibly standing instead. Like koalas and wombats, the pouch may have faced backwards so the joey could crawl down across its mother's abdomen to enter and attach itself to a teat until it could see—perhaps 260 days—and thermoregulate. It would have permanently left the pouch after 860 days and suckled until reaching Template:Cvt after four or five years.<ref name=Tyndale2001/>
In large kangaroos, females usually reach sexual maturity and enter oestrus soon after weaning, and males need double the time to reach sexual maturity. A similar pattern could have been exhibited in Diprotodon. Assuming a lifespan of up to 50 years, a female Diprotodon could have given birth eight times.<ref name=Tyndale2001/>
PalaeoecologyEdit
Diprotodon was present across the entire Australian continent by the Late Pleistocene,<ref name=Price2021/> especially following MIS5 approximately 110,000 years ago.<ref name=Price2009/> The onset of the Quaternary glaciation, with the continuous advance and retreat of glaciers at the poles, created extreme climatic variability elsewhere. In Australia, the warmer, wetter interglacial periods were received by forests and woodlands; colder, dryer glacial periods were more conducive to grasslands and deserts. The continent progressively became dryer as the Asian monsoons became less influential over Australia: the vast interior had become arid and sandy by 500,000 years ago; the mega-lakes that were once prominent, especially during interglacials in north-western Australia, dried up; and the rainforests of eastern Australia gradually retreated. Aridity has hastened over the last 100,000 years, especially after 60,000 years ago with surging El Niño–Southern Oscillations.<ref name=Black2012/>
The continent-wide distribution of Diprotodon indicates herds trekked across almost any habitat,<ref>Template:Cite journal</ref> much like modern African elephants south of the Sahara.<ref name=Price2008/> Diprotodon was a member of a diverse assemblage of megafauna that were endemic to Pleistocene Australia; these also included the thylacine, modern kangaroos, sthenurines (giant short-faced kangaroos), a diversity of modern and giant koala and wombat species,<ref name=Black2012/> the tapir-like Palorchestes, the giant turtle Meiolania, and the giant bird Genyornis.<ref name=Flannery1990/> Diprotodon coexisted with the diprotodontid Zygomaturus trilobus, which appears to have remained in the forests, whereas Diprotodon foraged the expanding grasslands and woodlands. Other contemporaneous dipotodontids (Hulitherium, Z. nimborensia, and Maokopia) were insular forms that were restricted to the forests of New Guinea.<ref name=Black2012/>
PredationEdit
Due to its massive size, Diprotodon would have been a tough adversary for native carnivores. It contended with the largest-known marsupial predator Thylacoleo carnifex; while Diprotodon remains that were gnawed or bitten by T. carnifex have been identified, it is unclear if the Template:Cvt marsupial predator was powerful enough to kill an animal surpassing Template:Cvt. The modern jaguar, at half the size of T. carnifex, can kill a Template:Cvt bull so it is possible T. carnifex could have killed small Diprotodon.<ref>Template:Cite journal</ref> Similar to recent kangaroos with thylacines or quolls, juvenile Diprotodon may have been at high risk of predation by T. carnifex; it and fossils of juvenile Diprotodon have been recovered from the same caves.Template:Sfn
The largest predators of Australia were reptiles, most notably the saltwater crocodile, the now-extinct crocodiles Paludirex and Quinkana, and the giant lizard megalania (Varanus priscus). At Template:Cvt in length, megalania was the largest carnivore of Pleistocene Australia.<ref name=Flannery1990>Template:Cite journal</ref>
ExtinctionEdit
As part of the Quaternary extinction event, Diprotodon and every other Australian land animal heavier than Template:Cvt became extinct. The timing and the exact cause are unclear because there is poor resolution on the ages of Australian fossil sites. Since their discovery, the extinction of the Australian megafauna has usually been blamed on the changing climate or overhunting by the first Aboriginal Australians.<ref name=David2021/> In 2001, Australian palaeontologist Richard Roberts and colleagues dated 28 major fossil sites across the continent, and were able to provide a precise date for megafaunal extinction. They found most disappear from the fossil record by 80,000 years ago, but Diprotodon; the giant wombat Phascolonus; Thylacoleo; and the short-faced kangaroos Procoptodon, Protemnodon, and Simosthenurus were identified at Ned's Gully, Queensland, and Kudjal Yolgah Cave, Western Australia, which they dated to respectively 47,000 and 46,000 years ago. Thus, all of the Australian Pleistocene megafauna died out probably between about 50,000 and 41,000 years ago. There also seems to have been a diverse assemblage of megafauna just before their extinction, and all populations across at least western and eastern Australia died out at about the same time.<ref name="New Ages">Template:Cite journal</ref> As of 2021, there is still no solid evidence of megafauna surviving past approximately 40,000 years ago; their latest occurrence, including Diprotodon, is recorded at South Walker Creek mine in the north-east at about 40,100 ± 1,700 years ago.<ref name=David2021>Template:Cite journal</ref>
At the time Roberts et al. published their paper, the earliest evidence of human activity in Australia was 56±4 thousand years old, which is close to their calculated date for the megafauna extinction; they hypothesised human hunting had eradicated the last megafauna within about 10,000 years of coexistence. Human hunting had earlier been blamed for the extinction of North American and New Zealand megafauna.<ref name="New Ages"/> Human activity was then generally regarded as the main driver of Australian megafaunal extinction, especially because the megafauna had survived multiple extreme drought periods during glacial periods. At the time, there did not seem to be any evidence of unusually extreme climate during this period.<ref name=Murphy2011>Template:Cite journal</ref> Due to the slowness of marsupial reproduction, even limited megafaunal hunting may have severely weakened the population.<ref name=Tyndale2001/><ref name=Brook2006>Template:Cite journal</ref>
In 2005, American geologist Gifford Miller noticed fire abruptly becomes more common about 45,000 years ago; he ascribed this increase to aboriginal fire-stick farmers, who would have regularly started controlled burns to clear highly productive forests and grasslands. Miller said this radically altered the vegetational landscape and promulgated the expanse of the modern-day fire-resilient scrub at the expense of the megafauna.<ref name=Miller2005>Template:Cite journal</ref><ref>Template:Cite journal</ref> Subsequent studies had difficulty firmly linking controlled burns with major ecological collapse.<ref name=Murphy2011/><ref>Template:Cite journal</ref><ref>Template:Cite journal</ref> The frequency of fire could have also increased as a consequence of megafaunal extinction because total plant consumption rapidly fell, leading to faster fuel buildup.<ref>Template:Cite journal</ref>
In 2017, the human-occupied Madjedbebe rock shelter on the northern Australian coast was dated to about 65,000 years ago, which if correct would mean humans and megafauna had coexisted for over 20,000 years.<ref name="ClarksonJacobs2017">Template:Cite journal</ref> Other authors have considered this dating questionable.<ref>Template:Cite journal</ref> In the 2010s, several ecological studies were published in support of major drought conditions coinciding with the final megafaunal extinctions.<ref name="Wroe2013">Template:Cite journal</ref><ref>Template:Cite journal</ref><ref>Template:Cite journal</ref><ref>Template:Cite journal</ref><ref>Template:Cite journal</ref> Their demise may have been the result of a combination of climatic change, human hunting, and human-driven landscape changes.<ref name=David2021/>
Cultural significanceEdit
Fossil evidenceEdit
Despite the role the first Aboriginal Australians are speculated to have had in the extinction of Diprotodon and other mammalian megafauna in Australia, there is little evidence humans used them at all in the 20,000 years of coexistence. No fossils of mammalian megafauna suggestive of human butchery or cooking have been found.Template:Efn<ref name=Langley2020/>
In 1984, Gail Paton discovered an upper-right Diprotodon incisor (2I) bearing 28 visible cut marks in Spring Creek, south-western Victoria; Ron Vanderwald and Richard Fullager studied the incisor, which was split in half longitudinally, seemingly while the bone was still fresh but it was glued together before Vanderwald and Fullager could inspect it. Each piece measures Template:Cvt in length. The marks are aligned in a straight line, and measure Template:Cvt in length, Template:Cvt in width, and Template:Cvt in depth. They determined it was inconsistent with bite marks from scavenging Thylacoleo or mice, and concluded it was incised by humans with flint as a counting system or a random doodle.<ref>Template:Cite journal</ref> This specimen became one of the most-cited pieces of evidence humans and megafauna directly interacted until a 2020 re-analysis by Australian palaeoanthropologist Michelle Langley identified the engraver as most-likely a tiger quoll.<ref name=Langley2020>Template:Cite journal</ref>
In 2016, Australian archaeologist Giles Hamm and colleagues unearthed a partial right radius belonging to a young Diprotodon in the Warratyi rock shelter. Because it lacks carnivore damage and the rock shelter is up a sheer face Diprotodon is unlikely to have climbed, they said humans were responsible for taking the Diprotodon to the site.<ref>Template:Cite journal</ref>
MythologyEdit
When the first massive fossils in Australia were dug up, it was not clear what animals they might have represented because there were no serious scientists on the continent. Local residents guessed some may have been the remains of rhinos or elephants. European settlers, the most-vocal of whom was Reverend John Dunmore Lang, forwarded these fossils as evidence of the Genesis flood narrative. Aboriginal Australians also attempted to fit the finds into their own religious ideas, quickly associating Diprotodon with the bunyip, a large, carnivorous, lake monster. Many ethnologists and palaeontologists of the time believed the bunyip to be a tribal memory of the lumbering giant creature that probably frequented marshlands, though at the time it was uncertain whether Diprotodon and other megafauna were still extant because the Australian continent had not yet been fully explored by Europeans. Scientific investigation into the bunyip was stigmatised after a purported bunyip skull was sensationalised in 1846, and was put on display at the Australian Museum. The following year, however, Owen recognised it as the skull of a foal, and was surprised the burgeoning Australian scientific community could have erred so egregiously.<ref name="Holden"/>
In 1892, Canadian geologist Henry Yorke Lyell Brown reported Aboriginal Australians identified Diprotodon fossils from Lake Eyre as those of the Rainbow Serpent, which he thought was a giant, bottom-dwelling fish. This notion became somewhat popularised after English geologist John Walter Gregory, who believed the god was a horned, scaly creature, conjectured it was a chimaera of Diprotodon—which he believed had a horn—and a crocodile. Later workers continued to report some link between the Rainbow Serpent and either Diprotodon or crocodiles.<ref name=Smith2018/>
These kinds of suppositions are not testable and require stories to survive in oral tradition for tens of thousands of years.<ref name=Smith2018>Template:Cite journal</ref> If Pleistocene megafauna are the basis of some aboriginal mythology, it is unclear if the stories were based on the creatures when they were alive or their fossils being discovered long after their extinction.<ref>Template:Cite book</ref>
Rock art representationsEdit
Aboriginal Australians decorated caves with paintings and drawings of several creatures but the identities of the subjects are often unclear. In 1907, Australian anthropologist Herbert Basedow found footprint petroglyphs in Yunta Springs and Wilkindinna, South Australia, which he believed were those of Diprotodon. In 1988, Australian historian Percy Trezise presented what he thought was a Quinkan depiction of Diprotodon to the First Congress of the Australian Rock Art Research Association. Both of these claims have their faults because the depictions bear several features that are inconsistent with what is known about Diprotodon. Unlike the more-naturalistic artwork of Early European modern humans, which are more easily identifiable as various animals, aboriginal artwork is much more stylistic and is mostly uninterpretable by an outsider. The subjects of aboriginal paintings can be mythological beings from the Dreaming rather than a corporeal subject.<ref>Template:Cite journal</ref><ref>Template:Cite book</ref>
See alsoEdit
NotesEdit
ReferencesEdit
External linksEdit
- {{#invoke:citation/CS1|citation
|CitationClass=web }}
- {{#invoke:citation/CS1|citation
|CitationClass=web }}
Further readingEdit
Template:Vombatiformes Template:Taxonbar Template:Authority control