Direct sum of groups
Template:Use American English Template:Short description {{ safesubst:#invoke:Unsubst||date=__DATE__ |$B= Template:Ambox }} Template:Group theory sidebar
In mathematics, a group G is called the direct sum<ref name=":0">Homology. Saunders MacLane. Springer, Berlin; Academic Press, New York, 1963.</ref><ref name=":1">László Fuchs. Infinite Abelian Groups</ref> of two normal subgroups with trivial intersection if it is generated by the subgroups. In abstract algebra, this method of construction of groups can be generalized to direct sums of vector spaces, modules, and other structures; see the article direct sum of modules for more information. A group which can be expressed as a direct sum of non-trivial subgroups is called decomposable, and if a group cannot be expressed as such a direct sum then it is called indecomposable.
DefinitionEdit
A group G is called the direct sum<ref name=":0" /><ref name=":1" /> of two subgroups H1 and H2 if
- each H1 and H2 are normal subgroups of G,
- the subgroups H1 and H2 have trivial intersection (i.e., having only the identity element <math>e</math> of G in common),
- G = ⟨H1, H2⟩; in other words, G is generated by the subgroups H1 and H2.
More generally, G is called the direct sum of a finite set of subgroups {Hi} if
- each Hi is a normal subgroup of G,
- each Hi has trivial intersection with the subgroup Template:Nowrap,
- G = ⟨{Hi}⟩; in other words, G is generated by the subgroups {Hi}.
If G is the direct sum of subgroups H and K then we write Template:Nowrap, and if G is the direct sum of a set of subgroups {Hi} then we often write G = ΣHi. Loosely speaking, a direct sum is isomorphic to a weak direct product of subgroups.
PropertiesEdit
If Template:Nowrap, then it can be proven that:
- for all h in H, k in K, we have that Template:Nowrap
- for all g in G, there exists unique h in H, k in K such that Template:Nowrap
- There is a cancellation of the sum in a quotient; so that Template:Nowrap is isomorphic to H
The above assertions can be generalized to the case of Template:Nowrap, where {Hi} is a finite set of subgroups:
- if Template:Nowrap, then for all hi in Hi, hj in Hj, we have that Template:Nowrap
- for each g in G, there exists a unique set of elements hi in Hi such that
- g = h1 ∗ h2 ∗ ... ∗ hi ∗ ... ∗ hn
- There is a cancellation of the sum in a quotient; so that Template:Nowrap is isomorphic to ΣHi.
Note the similarity with the direct product, where each g can be expressed uniquely as
- g = (h1,h2, ..., hi, ..., hn).
Since Template:Nowrap for all Template:Nowrap, it follows that multiplication of elements in a direct sum is isomorphic to multiplication of the corresponding elements in the direct product; thus for finite sets of subgroups, ΣHi is isomorphic to the direct product ×{Hi}.
Direct summandEdit
Given a group <math>G</math>, we say that a subgroup <math>H</math> is a direct summand of <math>G</math> if there exists another subgroup <math>K</math> of <math>G</math> such that <math>G = H+K</math>.
In abelian groups, if <math>H</math> is a divisible subgroup of <math>G</math>, then <math>H</math> is a direct summand of <math>G</math>.
ExamplesEdit
- If we take <math display="inline"> G= \prod_{i\in I} H_i </math> it is clear that <math> G </math> is the direct product of the subgroups <math display="inline"> H_{i_0} \times \prod_{i\not=i_0}H_i</math>.
- If <math>H</math> is a divisible subgroup of an abelian group <math>G</math> then there exists another subgroup <math>K</math> of <math>G</math> such that <math>G=K+H</math>.
- If <math>G</math> also has a vector space structure then <math>G</math> can be written as a direct sum of <math>\mathbb R</math> and another subspace <math>K</math> that will be isomorphic to the quotient <math>G/K</math>.
Equivalence of decompositions into direct sumsEdit
In the decomposition of a finite group into a direct sum of indecomposable subgroups the embedding of the subgroups is not unique. For example, in the Klein group <math>V_4 \cong C_2 \times C_2</math> we have that
- <math>V_4 = \langle(0,1)\rangle + \langle(1,0)\rangle,</math> and
- <math>V_4 = \langle(1,1)\rangle + \langle(1,0)\rangle.</math>
However, the Remak-Krull-Schmidt theorem states that given a finite group G = ΣAi = ΣBj, where each Ai and each Bj is non-trivial and indecomposable, the two sums have equal terms up to reordering and isomorphism.
The Remak-Krull-Schmidt theorem fails for infinite groups; so in the case of infinite G = H + K = L + M, even when all subgroups are non-trivial and indecomposable, we cannot conclude that H is isomorphic to either L or M.
Generalization to sums over infinite setsEdit
To describe the above properties in the case where G is the direct sum of an infinite (perhaps uncountable) set of subgroups, more care is needed.
If g is an element of the cartesian product Π{Hi} of a set of groups, let gi be the ith element of g in the product. The external direct sum of a set of groups {Hi} (written as ΣE{Hi}) is the subset of Π{Hi}, where, for each element g of ΣE{Hi}, gi is the identity <math>e_{H_i}</math> for all but a finite number of gi (equivalently, only a finite number of gi are not the identity). The group operation in the external direct sum is pointwise multiplication, as in the usual direct product.
This subset does indeed form a group, and for a finite set of groups {Hi} the external direct sum is equal to the direct product.
If G = ΣHi, then G is isomorphic to ΣE{Hi}. Thus, in a sense, the direct sum is an "internal" external direct sum. For each element g in G, there is a unique finite set S and a unique set {hi ∈ Hi : i ∈ S} such that g = Π {hi : i in S}.