Template:Short description Template:Use dmy dates This list compares various energies in joules (J), organized by order of magnitude.
Below 1 JEdit
Factor (joules) | SI prefix | Value | Item | ||
---|---|---|---|---|---|
10−34 | Template:Val | Energy of a photon with a frequency of 1 hertz.<ref name="britannica">{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | ||
Template:Val | Average kinetic energy of translational motion of a molecule at the lowest temperature reached (38 picokelvin<ref>Calculated: KEavg = (3/2) × Boltzmann constant × Temperature</ref> Template:As of) | ||||
10−30Template:Anchor | quecto- (qJ) | ||||
10−28 | 6.6×10−28Template:NbspJ | Energy of a typical AM radio photon (1 MHz) (4×10−9 eV)<ref>Calculated: Ephoton = hν = 6.626Template:ETemplate:NbspJ-s × 1Template:E Hz = 6.6Template:ETemplate:NbspJ. In eV: 6.6Template:ETemplate:NbspJ / 1.6Template:ETemplate:NbspJ/eV = 4.1Template:E eV.</ref> | |||
10−27Template:Anchor | ronto- (rJ) | ||||
10−24Template:Anchor | yocto- (yJ) | 1.6×10−24Template:NbspJ | Energy of a typical microwave oven photon (2.45 GHz) (1×10−5 eV)<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Calculated: Ephoton = hν = 6.626Template:ETemplate:NbspJ-s × 2.45Template:E Hz = 1.62Template:ETemplate:NbspJ. In eV: 1.62Template:ETemplate:NbspJ / 1.6Template:ETemplate:NbspJ/eV = 1.0Template:E eV.</ref> | |
10−23 | 2×10−23Template:NbspJ | Average kinetic energy of translational motion of a molecule in the Boomerang Nebula, the coldest place known outside of a laboratory, at a temperature of 1 kelvin<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Calculated: KEavg ≈ (3/2) × T × 1.38Template:E = (3/2) × 1 × 1.38Template:E ≈ 2.07Template:ETemplate:NbspJ</ref> | ||
10−22 | 2–3000×10−22Template:NbspJ | Energy of infrared light photons<ref name="NASA_spectrum"/> | |||
10−21Template:Anchor | zepto- (zJ) | 1.7×10−21Template:NbspJ | 1Template:NbspkJ/mol, converted to energy per molecule<ref>Calculated: 1Template:ETemplate:NbspJ / 6.022Template:E entities per mole = 1.7Template:ETemplate:NbspJ per entity</ref> | ||
2.1×10−21Template:NbspJ | Thermal energy in each degree of freedom of a molecule at 25 °C (kT/2) (0.01 eV)<ref>Calculated: 1.381Template:ETemplate:NbspJ/K × 298.15 K / 2 = 2.1Template:ETemplate:NbspJ</ref> | ||||
2.856×10−21Template:NbspJ | By Landauer's principle, the minimum amount of energy required at 25 °C to change one bit of information | ||||
3–7×10−21Template:NbspJ | Energy of a van der Waals interaction between atoms (0.02–0.04 eV)<ref name=ucla_chem125>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Calculated: 2 to 4Template:NbspkJ/mol = 2Template:ETemplate:NbspJ / 6.022Template:E molecules/mol = 3.3Template:ETemplate:NbspJ. In eV: 3.3Template:ETemplate:NbspJ / 1.6Template:ETemplate:NbspJ/eV = 0.02 eV. 4Template:ETemplate:NbspJ / 6.022Template:E molecules/mol = 6.7Template:ETemplate:NbspJ. In eV: 6.7Template:ETemplate:NbspJ / 1.6Template:ETemplate:NbspJ/eV = 0.04 eV.</ref> | |||
4.1×10−21Template:NbspJ | The "kT" constant at 25 °C, a common rough approximation for the total thermal energy of each molecule in a system (0.03 eV)<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
7–22×10−21Template:NbspJ | Energy of a hydrogen bond (0.04 to 0.13 eV)<ref name=ucla_chem125/><ref>Calculated: 4 to 13Template:NbspkJ/mol. 4Template:NbspkJ/mol = 4Template:ETemplate:NbspJ / 6.022Template:E molecules/mol = 6.7Template:ETemplate:NbspJ. In eV: 6.7Template:ETemplate:NbspJ / 1.6Template:E eV/J = 0.042 eV. 13Template:NbspkJ/mol = 13Template:ETemplate:NbspJ / 6.022Template:E molecules/mol = 2.2Template:ETemplate:NbspJ. In eV: 13Template:ETemplate:NbspJ / 6.022Template:E molecules/mol / 1.6Template:E eV/J = 0.13 eV.</ref> | ||||
10−20 | 4.5×10−20Template:NbspJ | Upper bound of the mass–energy of a neutrino in particle physics (0.28 eV)<ref>Template:Cite journal</ref><ref>Calculated: 0.28 eV × 1.6Template:ETemplate:NbspJ/eV = 4.5Template:ETemplate:NbspJ</ref> | |||
10−19 | Template:Val | 1 electronvolt (eV) by definition. This value is exact as a result of the 2019 revision of SI units.<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | ||
3–5×10−19Template:NbspJ | Energy range of photons in visible light (≈1.6–3.1 eV)<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Calculated: E = hc/λ. E780 nm = 6.6Template:E kg-m2/s × 3Template:E m/s / (780Template:E m) = 2.5Template:ETemplate:NbspJ. E_390 _nm = 6.6Template:E kg-m2/s × 3Template:E m/s / (390Template:E m) = 5.1Template:ETemplate:NbspJ</ref> | |||
3–14×10−19Template:NbspJ | Energy of a covalent bond (2–9 eV)<ref name=ucla_chem125/><ref>Calculated: 50 kcal/mol × 4.184Template:NbspJ/calorie / 6.0Template:Ee23 molecules/mol = 3.47Template:ETemplate:NbspJ. (3.47Template:ETemplate:NbspJ / 1.60Template:E eV/J = 2.2 eV.) and 200 kcal/mol × 4.184Template:NbspJ/calorie / 6.0Template:Ee23 molecules/mol = 1.389Template:ETemplate:NbspJ. (7.64Template:ETemplate:NbspJ / 1.60Template:E eV/J = 8.68 eV.)</ref> | ||||
5–200×10−19Template:NbspJ | Energy of ultraviolet light photons<ref name="NASA_spectrum"/> | ||||
10−18Template:Anchor | atto- (aJ) | 1.78×10−18Template:NbspJ | Bond dissociation energy for the carbon monoxide (CO) triple bond, alternatively stated: 1072 kJ/mol; 11.11eV per molecule.<ref>Template:Cite journal</ref>
This is the strongest chemical bond known. | ||
2.18×10−18Template:NbspJ | Ground state ionization energy of hydrogen (13.6 eV) | ||||
10−17 | 2–2000×10−17Template:NbspJ | Energy range of X-ray photons<ref name="NASA_spectrum">{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | ||
10−16 | |||||
10−15Template:Anchor | femto- (fJ) | 3 × 10−15Template:NbspJ | Average kinetic energy of one human red blood cell.<ref>Template:Cite journal</ref><ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Calculated: 1/2 × 27Template:E g × (3.5 miles per hour)2 = 3Template:ETemplate:NbspJ</ref> | |
10−14 | 1×10−14Template:NbspJ | Sound energy (vibration) transmitted to the eardrums by listening to a whisper for one second.<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}. "The eardrum is a [...] membran[e] with an area of 65 mm2."</ref><ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref><ref>Calculated: two eardrums ≈ 1 cm2. 1Template:E W/m2 × 1Template:E m2 × 1 s = 1Template:ETemplate:NbspJ</ref> | |
> 2×10−14Template:NbspJ | Energy of gamma ray photons<ref name="NASA_spectrum"/> | ||||
2.7×10−14Template:NbspJ | Upper bound of the mass–energy of a muon neutrino<ref>Template:Cite book</ref><ref>Calculated: 170Template:E eV × 1.6Template:ETemplate:NbspJ/eV = 2.7Template:ETemplate:NbspJ</ref> | ||||
8.2×10−14Template:NbspJ | Template:AnchorRest mass–energy of an electron<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> (0.511 MeV)<ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> | ||
10−13 | 1.6×10−13Template:NbspJ | 1 megaelectronvolt (MeV)<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | ||
2.3×10−13Template:NbspJ | Energy released by a single event of two protons fusing into deuterium (1.44 megaelectronvolt MeV)<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
10−12Template:Anchor | pico- (pJ) | 2.3×10−12Template:NbspJ | Kinetic energy of neutrons produced by DT fusion, used to trigger fission (14.1 MeV)<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> |
10−11 | 3.4×10−11Template:NbspJ | Average total energy released in the nuclear fission of one uranium-235 atom (215 MeV)<ref name="Energy From Uranium Fission">{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref name="Conversion from eV to J">{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> | |
10−10 | 1.492×10−10Template:NbspJ | Mass-energy equivalent of 1 Da<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> (931.5 MeV)<ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> | |
1.503×10−10Template:NbspJ | Rest mass–energy of a proton<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> (938.3 MeV)<ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> | ||
1.505×10−10Template:NbspJ | Rest mass–energy of a neutron<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> (939.6 MeV)<ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> | ||
1.6×10−10Template:NbspJ | 1 gigaelectronvolt (GeV)<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
3×10−10Template:NbspJ | Rest mass–energy of a deuteron<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
6×10−10Template:NbspJ | Rest mass–energy of an alpha particle<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
7×10−10Template:NbspJ | Energy required to raise a grain of sand by 0.1mm (the thickness of a piece of paper).<ref>Calculated: 7Template:E g × 9.8 m/s2 × 1Template:E m</ref> | ||||
10−9Template:Anchor | nano- (nJ) | 1.6×10−9Template:NbspJ | citation | CitationClass=web
}}</ref> | |
8×10−9Template:NbspJ | Initial operating energy per beam of the CERN Large Electron Positron Collider in 1989 (50 GeV)<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Calculated: 50Template:E eV × 1.6Template:ETemplate:NbspJ/eV = 8Template:ETemplate:NbspJ</ref> | |||
10−8 | 1.3×10−8Template:NbspJ | Mass–energy of a W boson (80.4 GeV)<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> | |
1.5×10−8Template:NbspJ | Mass–energy of a Z boson (91.2 GeV)<ref name="Amsler2008">Template:Cite journal</ref><ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
1.6×10−8Template:NbspJ | citation | CitationClass=web
}}</ref> | |||
2×10−8Template:NbspJ | Mass–energy of the Higgs Boson (125.1 GeV)<ref>Template:Cite journal</ref> | ||||
6.4×10−8Template:NbspJ | Operating energy per proton of the CERN Super Proton Synchrotron accelerator in 1976<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Calculated: 400Template:E eV × 1.6Template:ETemplate:NbspJ/eV = 6.4Template:ETemplate:NbspJ</ref> | |||
10−7 | 1×10−7Template:NbspJ | ≡ 1 erg<ref name=NIST_SI_units/> | |||
1.6×10−7Template:NbspJ | citation | CitationClass=web
}}</ref> about the kinetic energy of a flying mosquito<ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> | ||
10−6Template:Anchor | micro- (μJ) | 1.04×10−6Template:NbspJ | Energy per proton in the CERN Large Hadron Collider in 2015 (6.5 TeV)<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Calculated: 6.5Template:E eV per beam × 1.6Template:ETemplate:NbspJ/eV = 1.04Template:ETemplate:NbspJ</ref> | |
10−5 | |||||
10−4 | 1.0×10−4Template:NbspJ | Energy released by a typical radioluminescent wristwatch in 1 hour<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Template:Cite journal</ref> (1 μCi × 4.871 MeV × 1 hr) | ||
10−3Template:Anchor | milli- (mJ) | 3.0×10−3Template:NbspJ | Energy released by a P100 atomic battery in 1 hour<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> (2.4 V × 350 nA × 1 hr) | |
10−2Template:Anchor | centi- (cJ) | 4.0×10−2Template:NbspJ | citation | CitationClass=web
}}</ref> (2.0 V × 20 mA × 1 s) | |
10−1Template:Anchor | deci- (dJ) | 1.1×10−1Template:NbspJ | Energy of an American half-dollar falling 1 metre<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Calculated: m×g×h = 11.34Template:E kg × 9.8 m/s2 × 1 m = 1.1Template:ETemplate:NbspJ</ref> |
1 to 105 JEdit
Factor (joules) | SI prefix | Value | Item | ||
---|---|---|---|---|---|
100 | J | 1Template:NbspJ | ≡ 1 N·m (newton–metre) | ||
1Template:NbspJ | ≡ 1 W·s (watt-second) | ||||
1Template:NbspJ | citation | CitationClass=web
}}</ref>) falls 1 meter against Earth's gravity<ref>Calculated: m×g×h = 1Template:E kg × 9.8 m/s2 × 1 m = 1Template:NbspJ</ref> | |||
1Template:NbspJ | Energy required to heat 1 gram of dry, cool air by 1 degree Celsius<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
1.4Template:NbspJ | ≈ 1 ft·lbf (foot-pound force)<ref name=NIST_SI_units>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
4.184Template:NbspJ | ≡ 1 thermochemical calorie (small calorie)<ref name=NIST_SI_units/> | ||||
4.1868Template:NbspJ | citation | CitationClass=web
}}</ref> | |||
8Template:NbspJ | Greisen-Zatsepin-Kuzmin theoretical upper limit for the energy of a cosmic ray coming from a distant source<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Calculated: 5Template:E eV × 1.6Template:ETemplate:NbspJ/ev = 8Template:NbspJ</ref> | |||
101Template:Anchor | deca- (daJ) | 1×101Template:NbspJ | Flash energy of a typical pocket camera electronic flash capacitor Template:Nowrap @ Template:Nowrap<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref name="ev_pwrsh">{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> |
5×101Template:NbspJ | The most energetic cosmic ray ever detected.<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> Most likely a single proton traveling only very slightly slower than the speed of light.<ref> Template:Cite journal</ref> | |||
102Template:Anchor | hecto- (hJ) | 1.25×102Template:NbspJ | citation | CitationClass=web
}}</ref> thrown at 93 mph / 150 km/h (MLB average pitch speed).<ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> |
1.5×102 - 3.6×102Template:NbspJ | Energy delivered by a biphasic external electric shock (defibrillation), usually during adult cardiopulmonary resuscitation for cardiac arrest. | ||||
3×102Template:NbspJ | Energy of a lethal dose of X-rays<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
3×102Template:NbspJ | citation | CitationClass=web
}}</ref><ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref><ref>Kinetic energy at start of jump = potential energy at high point of jump. Using a mass of 70 kg and a high point of 40 cm => energy = m×g×h = 70 kg × 9.8 m/s2 × 40Template:E m = 274Template:NbspJ</ref> | ||
3.3×102Template:NbspJ | Energy to melt 1 g of ice<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
> 3.6×102Template:NbspJ | citation | CitationClass=web
}}</ref> standard men's javelin thrown at > 30 m/s<ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> by elite javelin throwers<ref>Calculated: 1/2 × 0.8 kg × (30 m/s)2 = 360Template:NbspJ</ref> | ||
5–20×102Template:NbspJ | Energy output of a typical photography studio strobe light in a single flash<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
6×102Template:NbspJ | Use of a 10-watt flashlight for 1 minute | ||||
7.5×102Template:NbspJ | A power of 1 horsepower applied for 1 second<ref name=NIST_SI_units/> | ||||
7.8×102Template:NbspJ | citation | CitationClass=web
}}</ref> standard men's shot thrown at 14.7 m/sTemplate:Citation needed by the world record holder Randy Barnes<ref>Calculated: 1/2 × 7.26 kg × (14.7 m/s)2 = 784Template:NbspJ</ref> | |||
8.01×102Template:NbspJ | Amount of work needed to lift a man with an average weight (81.7 kg) one meter above Earth (or any planet with Earth gravity) | ||||
103Template:Anchor | kilo- (kJ) | 1.1×103Template:NbspJ | ≈ 1 British thermal unit (BTU), depending on the temperature<ref name=NIST_SI_units/> | ||
1.4×103Template:NbspJ | Total solar radiation received from the Sun by 1 square meter at the altitude of Earth's orbit per second (solar constant)<ref>Template:Cite journal</ref> | ||||
2.3×103Template:NbspJ | Energy to vaporize 1 g of water into steam<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
3×103Template:NbspJ | Lorentz force can crusher pinch<ref>powerlabs.org – The PowerLabs Solid State Can Crusher!, 2002</ref> | ||||
3.4×103Template:NbspJ | Kinetic energy of world-record men's hammer throw (7.26 kg<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> thrown at 30.7 m/s<ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> in 1986)<ref>Calculated: 1/2 × 7.26 kg × (30.7 m/s)2 = 3420Template:NbspJ</ref> | ||
3.6×103Template:NbspJ | ≡ 1 W·h (watt-hour)<ref name=NIST_SI_units/> | ||||
4.2×103Template:NbspJ | Energy released by explosion of 1 gram of TNT<ref name=NIST_SI_units/><ref name="ReferenceA">4.2Template:ETemplate:NbspJ/ton of TNT-equivalent × (1 ton/1Template:E grams) = 4.2Template:ETemplate:NbspJ/gram of TNT-equivalent</ref> | ||||
4.2×103Template:NbspJ | ≈ 1 food Calorie (large calorie) | ||||
~7×103Template:NbspJ | Muzzle energy of an elephant gun, e.g. firing a .458 Winchester Magnum<ref name="accurate458">{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
8.5×103Template:NbspJ | Kinetic energy of a regulation baseball thrown at the speed of sound (343Template:Nbspm/s = 767Template:Nbspmph = 1,235Template:Nbspkm/h. Air, 20°C).<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
9×103Template:NbspJ | citation | CitationClass=web
}}</ref> | |||
104 | 1.7×104Template:NbspJ | Energy released by the metabolism of 1 gram of carbohydrates<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> or protein<ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> | |
3.8×104Template:NbspJ | Energy released by the metabolism of 1 gram of fat<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
4–5×104Template:NbspJ | Energy released by the combustion of 1 gram of gasoline<ref name=gascomb>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
5×104Template:NbspJ | Kinetic energy of 1 gram of matter moving at 10 km/s<ref>Calculated: E = 1/2 m×v2 = 1/2 × (1Template:E kg) × (1Template:E m/s)2 = 5Template:ETemplate:NbspJ.</ref> | ||||
105 | Template:Nowrap | Kinetic energy of an automobile at highway speeds (1 to 5 tons<ref name=car_weights>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> at Template:Nowrap or Template:Nowrap)<ref>Calculated: Using car weights of 1 ton to 5 tons. E = 1/2 m×v2 = 1/2 × (1Template:E kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 3.0Template:ETemplate:NbspJ. E = 1/2 × (5Template:E kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 15Template:ETemplate:NbspJ.</ref> |
106 to 1011 JEdit
Factor (joules) | SI prefix | Value | Item | |
---|---|---|---|---|
106Template:Anchor | mega- (MJ) | 1×106Template:NbspJ | Kinetic energy of a 2 tonne<ref name=car_weights/> vehicle at 32 metres per second (115 km/h or 72 mph)<ref>Calculated: KE = 1/2 × 2Template:E kg × (32 m/s)2 = 1.0Template:ETemplate:NbspJ</ref> | |
1.2×106Template:NbspJ | Approximate food energy of a snack such as a Snickers bar (280 food calories)<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | ||
3.6×106Template:NbspJ | = 1 kWh (kilowatt-hour) (used for electricity)<ref name=NIST_SI_units/> | |||
4.2×106Template:NbspJ | Energy released by explosion of 1 kilogram of TNT<ref name=NIST_SI_units/><ref name="ReferenceA"/> | |||
6.1×106Template:NbspJ | Kinetic energy of the 4 kg tungsten APFSDS penetrator after being fired from a 120mm KE-W A1 cartridge with a nominal muzzle velocity of 1740 m/s.<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> | |
8.4×106Template:NbspJ | citation | CitationClass=web
}}</ref><ref>Calculated: 2000 food calories = 2.0Template:E cal × 4.184Template:NbspJ/cal = 8.4Template:ETemplate:NbspJ</ref> | ||
9.1×106Template:NbspJ | citation | CitationClass=web
}}</ref> | ||
107 | 1×107Template:NbspJ | Kinetic energy of the armor-piercing round fired by the ISU-152 assault gun<ref>Calculated: 1/2 × m × v2 = 1/2 × 48.78 kg × (655 m/s)2 = 1.0Template:ETemplate:NbspJ.</ref>Template:Citation needed | ||
1.1×107Template:NbspJ | Recommended food energy intake per day for a moderately active man (2600 food calories)<ref name=nih_balance/><ref>Calculated: 2600 food calories = 2.6Template:E cal × 4.184Template:NbspJ/cal = 1.1Template:ETemplate:NbspJ</ref> | |||
3.3×107Template:NbspJ | Kinetic energy of a 23 lb projectile fired by the Navy's mach 8 railgun.<ref>Template:Cite magazine</ref> | |||
3.7×107Template:NbspJ | citation | CitationClass=web
}}</ref><ref>Calculated J per dollar: 1 million BTU/$28.90 = 1Template:E BTU / 28.90 dollars × 1.055Template:ETemplate:NbspJ/BTU = 3.65Template:ETemplate:NbspJ/dollar</ref><ref>Calculated cost per kWh: 1 kWh × 3.60Template:ETemplate:NbspJ/kWh / 3.65Template:ETemplate:NbspJ/dollar = 0.0986 dollar/kWh</ref> | ||
4×107Template:NbspJ | Energy from the combustion of 1 cubic meter of natural gas<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | ||
4.2×107Template:NbspJ | Caloric energy consumed by Olympian Michael Phelps on a daily basis during Olympic training<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | ||
6.3×107Template:NbspJ | Theoretical minimum energy required to accelerate 1 kg of matter to escape velocity from Earth's surface (ignoring atmosphere)<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | ||
9×107Template:NbspJ | Total mass-energy of 1 microgram of matter (25 kWh) | |||
108 | 1×108Template:NbspJ | Kinetic energy of a 55 tonne aircraft at typical landing speed (59 m/s or 115 knots)Template:Citation needed | ||
1.1×108Template:NbspJ | ≈ 1 therm, depending on the temperature<ref name=NIST_SI_units/> | |||
1.1×108Template:NbspJ | ≈ 1 Tour de France, or ~90 hours<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> ridden at 5 W/kg<ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> by a 65 kg rider<ref>Calculated: 90 hr × 3600 seconds/hr × 5 W/kg × 65 kg = 1.1Template:ETemplate:NbspJ</ref> | |
7.3×108Template:NbspJ | ≈ Energy from burning 16 kilograms of oil (using 135 kg per barrel of light crude)Template:Citation needed | |||
109Template:Anchor | giga- (GJ) | 1×109Template:NbspJ | Energy in an average lightning bolt<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> (thunder) |
1.1×109Template:NbspJ | Magnetic stored energy in the world's largest toroidal superconducting magnet for the ATLAS experiment at CERN, Geneva<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | ||
1.2×109Template:NbspJ | Inflight 100-ton Boeing 757-200 at 300 knots (154 m/s) | |||
1.4×109Template:NbspJ | Theoretical minimum amount of energy required to melt a tonne of steel (380 kWh)<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Calculated: 380 kW-h × 3.6Template:ETemplate:NbspJ/kW-h = 1.37Template:ETemplate:NbspJ</ref> | ||
2×109Template:NbspJ | Energy of an ordinary Template:Nowrap gasoline tank of a car.<ref name=gascomb/><ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>thepartsbin.com – Volvo Fuel Tank: Compare at The Parts BinTemplate:Dead link, 6 May 2012</ref> | ||
2×109Template:NbspJ | Unit of energy in Planck units,<ref><math>E_\text{P} = \sqrt{\frac{\hbar c^5}{G}} </math></ref> roughly the diesel tank energy of a mid-sized truck. | |||
2.49×109Template:NbspJ | Approximate kinetic energy carried by American Airlines Flight 11 at the moment of impact with WTC 1 on September 11, 2001.<ref name=":4">{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref name="wa">{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> | |
3×109Template:NbspJ | Inflight 125-ton Boeing 767-200 flying at 373 knots (192 m/s) | |||
3.3×109Template:NbspJ | Approximate average amount of energy expended by a human heart muscle over an 80-year lifetime<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Calculated: 1.3Template:NbspJ/s × 80 years × 3.16Template:E s/year = 3.3Template:ETemplate:NbspJ</ref> | ||
3.6×109Template:NbspJ | = 1 MW·h (megawatt-hour) | |||
4.2×109Template:NbspJ | Energy released by explosion of 1 ton of TNT. | |||
4.5×109Template:NbspJ | Average annual energy usage of a standard refrigerator<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Calculated: 1239 kWh × 3.6Template:ETemplate:NbspJ/kWh = 4.5Template:ETemplate:NbspJ</ref> | ||
6.1×109Template:NbspJ | ≈ 1 bboe (barrel of oil equivalent)<ref name="oe">Energy Units Template:Webarchive, by Arthur Smith, 21 January 2005</ref> | |||
1010 | 1.9×1010Template:NbspJ | Kinetic energy of an Airbus A380 at cruising speed (560 tonnes at 511 knots or 263 m/s) | ||
4.2×1010Template:NbspJ | ≈ 1 toe (ton of oil equivalent)<ref name="oe"/> | |||
4.6×1010Template:NbspJ | Yield energy of a Massive Ordnance Air Blast bomb, the second most powerful non-nuclear weapon ever designed<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Calculated: 11 tons of TNT-equivalent × 4.184Template:ETemplate:NbspJ/ton of TNT-equivalent = 4.6Template:ETemplate:NbspJ</ref> | ||
7.3×1010Template:NbspJ | citation | CitationClass=web
}}</ref><ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref><ref>Calculated: 581 gallons × 125Template:ETemplate:NbspJ/gal = 7.26Template:ETemplate:NbspJ</ref> | |
8.6×1010Template:NbspJ | ≈ 1 MW·d (megawatt-day), used in the context of power plants (24 MW·h)<ref>Calculated: 1Template:E watts × 86400 seconds/day = 8.6Template:ETemplate:NbspJ</ref> | |||
8.8×1010Template:NbspJ | Total energy released in the nuclear fission of one gram of uranium-235<ref name="Energy From Uranium Fission"/><ref name="Conversion from eV to J"/><ref>Calculated: 3.44Template:ETemplate:NbspJ/U-235-fission × 1Template:E kg / (235 amu per U-235-fission × 1.66Template:E amu/kg) = 8.82Template:ETemplate:NbspJ</ref> | |||
9×1010Template:NbspJ | Total mass-energy of 1 milligram of matter (25 MW·h) | |||
1011 | 1.1×1011Template:NbspJ | citation | CitationClass=web
}}</ref> | |
2.4×1011Template:NbspJ | Approximate food energy consumed by an average human in an 80-year lifetime.<ref>Calculated: 2000 kcal/day × 365 days/year × 80 years = 2.4Template:ETemplate:NbspJ</ref> |
1012 to 1017 JEdit
Factor (joules) | SI prefix | Value | Item | ||
---|---|---|---|---|---|
1012Template:Anchor | tera- (TJ) | 1.85×1012Template:NbspJ | citation | CitationClass=web
}}</ref><ref>Equation for calculating potential assumes that the towers' center of mass is located halfway along the building's height of ~416 meters.</ref><ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> |
3.4×1012Template:NbspJ | Maximum fuel energy of an Airbus A330-300 (97,530 liters<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> of Jet A-1<ref name="bp_jet_a1">{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref>)<ref>Calculated: 97530 liters × 0.804 kg/L × 43.15 MJ/kg = 3.38Template:ETemplate:NbspJ</ref> | ||
3.6×1012Template:NbspJ | 1 GW·h (gigawatt-hour)<ref>Calculated: 1Template:E watts × 3600 seconds/hour</ref> | ||||
4×1012Template:NbspJ | Electricity generated by one 20-kg CANDU fuel bundle assuming ~29%<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> thermal efficiency of reactor<ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref><ref>Calculated: 7500Template:E watt-days/tonne × (0.020 tonnes per bundle) × 86400 seconds/day = 1.3Template:ETemplate:NbspJ of burnup energy. Electricity = burnup × ~29% efficiency = 3.8Template:ETemplate:NbspJ</ref> | ||
4.2×1012Template:NbspJ | Chemical energy released by the detonation of 1 kiloton of TNT<ref name=NIST_SI_units/><ref>Calculated: 4.2Template:ETemplate:NbspJ/ton of TNT-equivalent × 1Template:E tons/megaton = 4.2Template:ETemplate:NbspJ/megaton of TNT-equivalent</ref> | ||||
6.4×1012Template:NbspJ | Energy contained in jet fuel in a Boeing 747-100B aircraft at max fuel capacity (183,380 liters<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> of Jet A-1<ref name=bp_jet_a1/>)<ref>Calculated: 183380 liters × 0.804 kg/L × 43.15 MJ/kg = 6.36Template:ETemplate:NbspJ</ref> | |||
1013 | 1.1×1013Template:NbspJ | Energy of the maximum fuel an Airbus A380 can carry (320,000 liters<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> of Jet A-1<ref name=bp_jet_a1/>)<ref>Calculated: 320,000 L × 0.804 kg/L × 43.15 MJ/kg = 11.1Template:ETemplate:NbspJ</ref> | ||
1.2×1013Template:NbspJ | Orbital kinetic energy of the International Space Station (417 tonnes<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> at 7.7 km/s<ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref>)<ref>Calculated: E = 1/2 m.v2 = 1/2 × 417000 kg × (7700m/s)2 = 1.2Template:ETemplate:NbspJ</ref> | ||
1.20×1013Template:NbspJ | Orbital kinetic energy of the Parker Solar Probe as it dives deep into the Sun's gravity well in December 2024, reaching a peak velocity of 430,000 mph.<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref><ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> | |
6.3×1013Template:NbspJ | Yield of the Little Boy atomic bomb dropped on Hiroshima in World War II (15 kilotons)<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Calculated: 15 kt = 15Template:E grams of TNT-equivalent × 4.2Template:ETemplate:NbspJ/gram TNT-equivalent = 6.3Template:ETemplate:NbspJ</ref> | |||
9×1013Template:NbspJ | Theoretical total mass–energy of 1 gram of matter (25 GW·h) <ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
1014 | 1.8×1014Template:NbspJ | Energy released by annihilation of 1 gram of antimatter and matter (50 GW·h) | |||
3.75×1014Template:NbspJ | Total energy released by the Chelyabinsk meteor.<ref name="chelyabinsk">{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
6×1014Template:NbspJ | Energy released by an average hurricane per day<ref name="noaa">{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
1015 | peta- (PJ) Template:Anchor | > 1015Template:NbspJ | Energy released by a severe thunderstorm<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |
1×1015Template:NbspJ | Yearly electricity consumption in Greenland as of 2008<ref name="CIA_electricity_consumption">{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Calculated: 288.6Template:E kWh × 3.60Template:ETemplate:NbspJ/kWh = 1.04Template:ETemplate:NbspJ</ref> | |||
4.2×1015Template:NbspJ | Energy released by explosion of 1 megaton of TNT<ref name=NIST_SI_units/><ref>Calculated: 4.2Template:ETemplate:NbspJ/ton of TNT-equivalent × 1Template:E tons/megaton = 4.2Template:ETemplate:NbspJ/megaton of TNT-equivalent</ref> | ||||
1016 | 1×1016Template:NbspJ | Estimated impact energy released in forming Meteor CraterTemplate:Citation needed | |||
1.1×1016Template:NbspJ | Yearly electricity consumption in Mongolia as of 2010<ref name="CIA_electricity_consumption"/><ref>Calculated: 3.02Template:E kWh × 3.60Template:ETemplate:NbspJ/kWh = 1.09Template:ETemplate:NbspJ</ref> | ||||
6.3×1016Template:NbspJ | Yield of Castle Bravo, the most powerful nuclear weapon tested by the United States<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
7.9×1016Template:NbspJ | citation | CitationClass=web
}}</ref> | |||
9×1016Template:NbspJ | Mass–energy of 1 kilogram of matter<ref>Calculated: E = mc2 = 1 kg × (2.998Template:E m/s)2 = 8.99Template:ETemplate:NbspJ</ref> | ||||
1017 | 1.4×1017Template:NbspJ | Seismic energy released by the 2004 Indian Ocean earthquake<ref>Template:Cite journal</ref> | |||
1.7×1017Template:NbspJ | Total energy from the Sun that strikes the face of the Earth each second<ref name="sun1">The Earth has a cross section of 1.274×1014 square meters and the solar constant is 1361 watts per square meter. Note, however, that because portions of Earth reflect light well, the actual energy absorbed is about 1.2*10^17 watts, from an average albedo of 0.3.</ref> | ||||
2.1×1017Template:NbspJ | Yield of the Tsar Bomba, the most powerful nuclear weapon ever tested (50 megatons)<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Calculated: 50Template:E tons TNT-equivalent × 4.2Template:ETemplate:NbspJ/ton TNT-equivalent = 2.1Template:ETemplate:NbspJ</ref> | |||
2.552×1017Template:NbspJ | Total energy of the 2022 Hunga Tonga–Hunga Haʻapai eruption<ref>Template:Cite journal</ref><ref>Calculated to be 61 megatons of TNT, equivalent to 2.552Template:ETemplate:NbspJ</ref> | ||||
4.2×1017Template:NbspJ | Yearly electricity consumption of Norway as of 2008<ref name="CIA_electricity_consumption"/><ref>Calculated: 115.6Template:E kWh × 3.60Template:ETemplate:NbspJ/kWh = 4.16Template:ETemplate:NbspJ</ref> | ||||
4.516×1017Template:NbspJ | citation | CitationClass=web
}}</ref> | |||
8.4x1017Template:NbspJ | Estimated energy released by the eruption of the Indonesian volcano, Krakatoa, in 1883<ref>Template:Cite book</ref><ref>Calculated: 200Template:E tons of TNT equivalent × 4.2Template:ETemplate:NbspJ/ton of TNT equivalent = 8.4Template:ETemplate:NbspJ</ref><ref>This value appears to be referred only to the third explosion on 27 August, 10.02 a.m.
According to reports, the third explosion was by far the largest; it is associated to the biggest sound in the recorded history, the highest tsunami during the eruption and the most powerful shock waves rounded the world several times. 200 Megatons of TNT are often referred as the total energy released by the entire eruption, but it's plausible that are rather the energy released by the single third explosion, considering the effects.[1][2]</ref> |
1018 to 1023 JEdit
Factor (joules) | SI prefix | Value | Item | ||
---|---|---|---|---|---|
1018 | exa- (EJ) Template:Anchor | 9.4×1018Template:NbspJ | citation | CitationClass=web
}}</ref><ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> |
1019 | 1×1019Template:NbspJ | Thermal energy released by the 1991 Pinatubo eruption<ref name=":3" /> | |||
1.1×1019Template:NbspJ | Seismic energy released by the 1960 Valdivia Earthquake<ref name=":3">Template:Cite journal</ref> | ||||
1.2×1019Template:NbspJ | citation | CitationClass=web
}}</ref> (2.86 Gigatons) | |||
1.4×1019Template:NbspJ | Yearly electricity consumption in the U.S. as of 2009<ref name="CIA_electricity_consumption" /><ref>Calculated: 3.741Template:E kWh × 3.600Template:ETemplate:NbspJ/kWh = 1.347Template:ETemplate:NbspJ</ref> | ||||
1.4×1019J | Yearly electricity production in the U.S. as of 2009<ref name=CIA_us>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Calculated: 3.953Template:E kWh × 3.600Template:ETemplate:NbspJ/kWh = 1.423Template:ETemplate:NbspJ</ref> | |||
5×1019Template:NbspJ | Energy released in 1 day by an average hurricane in producing rain (400 times greater than the wind energy)<ref name="noaa"/> | ||||
6.4×1019Template:NbspJ | Yearly electricity consumption of the world Template:As of<ref name=CIA_world>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Calculated: 17.8Template:E kWh × 3.60Template:ETemplate:NbspJ/kWh = 6.41Template:ETemplate:NbspJ</ref> | |||
6.8×1019Template:NbspJ | Yearly electricity generation of the world Template:As of<ref name=CIA_world/><ref>Calculated: 18.95Template:E kWh × 3.60Template:ETemplate:NbspJ/kWh = 6.82Template:ETemplate:NbspJ</ref> | ||||
1020 | 1.4×1020Template:NbspJ | Total energy released in the 1815 Mount Tambora eruption<ref>Template:Cite magazine</ref> | |||
2.33×1020Template:NbspJ | Kinetic energy of a carbonaceous chondrite meteor 1 km in diameter striking Earth's surface at 20 km/s.<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> Such an impact occurs every ~500,000 years.<ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> | ||
2.4×1020Template:NbspJ | Total latent heat energy released by Hurricane Katrina<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
5×1020Template:NbspJ | Total world annual energy consumption in 2010<ref name="BP_Statistical_Review_2011">{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Calculated: 12002.4Template:E tonnes of oil equivalent × 42Template:ETemplate:NbspJ/tonne of oil equivalent = 5.0Template:ETemplate:NbspJ</ref> | |||
6.2×1020Template:NbspJ | World primary energy generation in 2023 (620 EJ).<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>"2023 saw a second consecutive record year for global primary energy consumption as it grew by 2%, reaching 620 EJ."</ref> | |||
8×1020Template:NbspJ | Estimated global uranium resources for generating electricity 2005<ref name=iaea>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref><ref name="doe">{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref><ref>Final number is computed. Energy Outlook 2007 shows 15.9% of world energy is nuclear. IAEA estimates conventional uranium stock, at today's prices is sufficient for 85 years. Convert billion kilowatt-hours to joules then: 6.25×1019×0.159×85 = 8.01×1020.</ref> | |
1021 | zetta- (ZJ) Template:Anchor | 6.9×1021Template:NbspJ | Estimated energy contained in the world's natural gas reserves as of 2010<ref name=BP_Statistical_Review_2011 /><ref>Calculated: "6608.9 trillion cubic feet" => 6608.9Template:E billion cubic feet × 0.025 million tonnes of oil equivalent/billion cubic feet × 1Template:E tonnes of oil equivalent/million tonnes of oil equivalent × 42Template:ETemplate:NbspJ/tonne of oil equivalent = 6.9Template:ETemplate:NbspJ</ref> | ||
7.0×1021Template:NbspJ | Thermal energy released by the Toba eruption<ref name=":3" /> | ||||
7.9×1021Template:NbspJ | Estimated energy contained in the world's petroleum reserves as of 2010<ref name=BP_Statistical_Review_2011 /><ref>Calculated: "188.8 thousand million tonnes" => 188.8Template:E tonnes of oil × 42Template:ETemplate:NbspJ/tonne of oil = 7.9Template:ETemplate:NbspJ</ref> | ||||
9.3×1021Template:NbspJ | Annual net uptake of thermal energy by the global ocean during 2003-2018<ref>Template:Cite journalCalculated per reference: 0.58Template:NbspW·m−2 is 9.3Template:ETemplate:NbspJ·yr−1 in the global domain</ref> | ||||
1022 | 1.2×1022J | Seismic energy of a magnitude 11 earthquake on Earth (M 11)<ref>Template:Cite journal</ref> | |||
1.5×1022J | Total energy from the Sun that strikes the face of the Earth each day<ref name="sun1" /><ref>Calculated: 1.27Template:E m2 × 1370 W/m2 × 86400 s/day = 1.5Template:ETemplate:NbspJ</ref> | ||||
1.94×1022J | Impact event that formed the Siljan Ring, the largest impact structure in Europe<ref>Template:Cite journal</ref> | ||||
2.4×1022Template:NbspJ | Estimated energy contained in the world's coal reserves as of 2010<ref name=BP_Statistical_Review_2011 /><ref>Calculated: 860938 million tonnes of coal => 860938Template:E tonnes of coal × (1/1.5 tonne of oil equivalent / tonne of coal) × 42Template:ETemplate:NbspJ/tonne of oil equivalent = 2.4Template:ETemplate:NbspJ</ref> | ||||
2.9×1022Template:NbspJ | Identified global uranium-238 resources using fast reactor technology<ref name=iaea/> | ||||
3.9×1022Template:NbspJ | Estimated energy contained in the world's fossil fuel reserves as of 2010<ref name=BP_Statistical_Review_2011 /><ref>Calculated: natural gas + petroleum + coal = 6.9Template:ETemplate:NbspJ + 7.9Template:ETemplate:NbspJ + 2.4Template:ETemplate:NbspJ = 3.9Template:ETemplate:NbspJ</ref> | ||||
8.03×1022Template:NbspJ | Total energy of the 2004 Indian Ocean earthquake<ref>Template:Cite journal</ref> | ||||
1023 | 1.5×1023Template:NbspJ | Total energy of the 1960 Valdivia earthquake<ref>Template:Cite journal</ref> | |||
2.2×1023Template:NbspJ | Total global uranium-238 resources using fast reactor technology<ref name="iaea" /> | ||||
3×1023Template:NbspJ | The energy released in the formation of the Chicxulub Crater in the Yucatán Peninsula<ref name="Richards">Template:Cite journal</ref> |
Over 1024 JEdit
Factor (joules) | SI prefix | Value | Item | ||
---|---|---|---|---|---|
1024 | yotta- (YJ) | 2.31×1024Template:NbspJ | Total energy of the Sudbury impact event<ref>Template:Cite conference</ref> | ||
2.69×1024Template:NbspJ | Rotational energy of Venus, which has a sidereal period of (-)243 Earth days.<ref>Template:Cite journal</ref><ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Clarification of calculation: Rotational energy = (defined equal to) 1/2 * Moment of Inertia Factor * Mass * Radius^2 * Angular Velocity^2 The inertial factor has been normalized, and takes on a value between 0 and 1. In this case it is 0.337(24).</ref> | |||
3.8×1024Template:NbspJ | Radiative heat energy released from the Earth’s surface each year<ref name=":3" /> | ||||
5.5×1024Template:NbspJ | Total energy from the Sun that strikes the face of the Earth each year<ref name="sun1" /><ref>Calculated: 1.27Template:E m2 × 1370 W/m2 × 86400 s/day = 5.5Template:ETemplate:NbspJ</ref> | ||||
1025 | 4×1025Template:NbspJ | Total energy of the Carrington Event in 1859<ref>Template:Cite journal</ref> | |||
1026 | >1026J | Estimated energy of early Archean asteroid impacts<ref>Template:Cite journal</ref> | |||
3.2×1026Template:NbspJ | Bolometric energy of Proxima Centauri's superflare in March 2016 (10^33.5 erg). In one year, potentially five similar superflares erupts from the surface of the red dwarf.<ref>Template:Cite journal</ref> | ||||
3.828×1026Template:NbspJ | Total radiative energy output of the Sun each second<ref name=sun2>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
1027 | ronna- (RJ) | 1×1027Template:NbspJ | Estimated energy released by the impact that created the Caloris basin on Mercury<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |
1×1027Template:NbspJ | Upper limit of the most energetic solar flares possible (X1000)<ref>Template:Cite journal</ref> | ||||
5.19×1027Template:NbspJ | citation | CitationClass=web
}}</ref><ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref><ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> Note that the evaporated water still remains on Earth, merely in vapor form. | |
4.2×1027Template:NbspJ | Kinetic energy of a regulation baseball thrown at the speed of the Oh-My-God particle, itself a cosmic ray proton with the kinetic energy of a baseball thrown at 60Template:Nbspmph (~50Template:NbspJ).<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
1028 | 3.8×1028Template:NbspJ | Kinetic energy of the Moon in its orbit around the Earth (counting only its velocity relative to the Earth)<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Calculated: KE = 1/2 × m × v2. v = 1.023Template:E m/s. m = 7.349Template:E kg. KE = 1/2 × (7.349Template:E kg) × (1.023Template:E m/s)2 = 3.845Template:ETemplate:NbspJ.</ref> | ||
7×1028Template:NbspJ | Total energy of the stellar superflare from V1355 Orionis<ref>Template:Cite journal</ref><ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
1029 | 2.1×1029Template:NbspJ | Rotational energy of the Earth<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref><ref>Calculated: E_rotational = 1/2 × I × w2 = 1/2 × (8.0Template:E kg m2) × (2×pi/(23.9345 hour period × 3600 seconds/hour))2 = 2.1Template:ETemplate:NbspJ</ref> | |
1030 | quetta- (QJ) | 1.79×1030Template:NbspJ | Rough estimate of the gravitational binding energy of Mercury.<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |
1031 | 2×1031Template:NbspJ | The Theia Impact, the most energetic event ever in Earth's history<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Template:Cite arXiv</ref> | ||
3.3×1031J | Total energy output of the Sun each day<ref name="sun2"/><ref>Calculated: 3.8Template:ETemplate:NbspJ/s × 86400 s/day = 3.3Template:ETemplate:NbspJ</ref> | ||||
1032 | 1.71×1032Template:NbspJ | Gravitational binding energy of the Earth<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | ||
3.10×1032Template:NbspJ | Yearly energy output of Sirius B, the ultra-dense and Earth-sized white dwarf companion of Sirius, the Dog Star. It has a surface temperature of about 25,200 K.<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
1033 | 2.7×1033Template:NbspJ | Earth's kinetic energy at perihelion in its orbit around the Sun<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>KE = 1/2 × 5.9722×10^24 kg × (30.29 km/s)^2 = 2.74×10^33 J</ref> | ||
1034 | 1.2×1034Template:NbspJ | Total energy output of the Sun each year<ref name="sun2"/><ref>Calculated: 3.8Template:ETemplate:NbspJ/s × 86400 s/day × 365.25 days/year = 1.2Template:ETemplate:NbspJ</ref> | |||
1035 | 3.5×1035Template:NbspJ | The most energetic stellar superflare to date (V2487 Ophiuchi)<ref>Template:Cite arXiv</ref> | |||
1038 | 7.53×1038Template:NbspJ | citation | CitationClass=web
}}</ref><ref name=":5" /> | ||
1039 | 2–5×1039 J | Energy of the giant flare (starquake) released by SGR 1806-20<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Template:Cite journal</ref><ref>Template:Cite journal</ref> | ||
6.602×1039 JTemplate:Nbsp | Theoretical total mass–energy of the Moon<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> | ||
1040 | 1.61×1040Template:NbspJ | citation | CitationClass=web
}}</ref> | ||
1041 | 2.276×1041Template:NbspJ | Gravitational binding energy of the Sun<ref name="U"><math>U = \frac{(3/5)GM^2}{r}</math>Template:BrChandrasekhar, S. 1939, An Introduction to the Study of Stellar Structure (Chicago: U. of Chicago; reprinted in New York: Dover), section 9, eqs. 90–92, p. 51 (Dover edition)Template:BrLang, K. R. 1980, Astrophysical Formulae (Berlin: Springer Verlag), p. 272</ref> | |||
5.3675×1041Template:NbspJ | Theoretical total mass–energy of the Earth<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> | ||
1043 | 5×1043Template:NbspJ | Total energy of all gamma rays in a typical gamma-ray burst if collimated<ref>Template:Cite journal "the gamma-ray energy release, corrected for geometry, is narrowly clustered around 5 × 1050 erg"</ref><ref>Calculated: 5Template:E erg × 1Template:ETemplate:NbspJ/erg = 5Template:ETemplate:NbspJ</ref> | |||
>1043 J | Total energy in a typical fast blue optical transient (FBOT)<ref>Template:Cite journal</ref> | ||||
1044 | ~1044 J | Average value of a Tidal Disruption Event (TDE) in optical/UV bands<ref>Template:Cite journal</ref> | |||
~1044 J | Estimated kinetic energy released by FBOT CSS161010<ref>Template:Cite journal</ref> | ||||
~1044Template:NbspJ | Total energy released in a typical supernova,<ref name=":1" /><ref>Template:Cite journal</ref> sometimes referred to as a foe. | ||||
1.233×1044Template:NbspJ | Approximate lifetime energy output of the Sun.<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> | ||
Template:Val | Total energy of a typical gamma-ray burst if collimated<ref name=":1">Template:Cite journal</ref> | ||||
1045 | ~1045 J | Estimated energy released in a hypernova and pair instability supernova<ref>Template:Cite journal</ref> | |||
1045 J | Energy released by the energetic supernova, SN 2016aps<ref>Template:Cite journal</ref><ref>Template:Cite journal</ref> | ||||
1.7–1.9×1045 J | Energy released by hypernova ASASSN-15lh<ref>Template:Cite journal</ref> | ||||
2.3×1045 J | Energy released by the energetic supernova PS1-10adi<ref>Template:Cite journal</ref><ref>Both ASSASN-15lh and PS1-10adi are indicated as supernovae and probably they are; actually, other mechanisms are proposed to explain them, more or less in accordance to the characteristics of supernovae</ref> | ||||
>1045 J | Estimated energy of a magnetorotational hypernova<ref>Template:Cite journal</ref> | ||||
>1045Template:NbspJ | Total energy (energy in gamma rays+relativistic kinetic energy) of hyper-energetic gamma-ray burst if collimated<ref>Template:Cite journal</ref><ref>Template:Cite journal</ref><ref>Template:Cite journal</ref><ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> | ||
1046 | >1046Template:NbspJ | Estimated energy in theoretical quark-novae<ref>Template:Cite journal</ref> | |||
~1046Template:NbspJ | Upper limit of the total energy of a supernova<ref>Template:Cite journal</ref><ref>Template:Cite journal</ref> | ||||
1.5×1046Template:NbspJ | Total energy of the most energetic optical non-quasar transient, AT2021lwx<ref name="Wiseman2023">Template:Cite journal</ref> | ||||
1047 | 1045-47 J | Estimated energy of stellar mass rotational black holes by vacuum polarization in an electromagnetic field<ref>Template:Cite journal</ref><ref>Template:Cite journal</ref> | |||
1047 J | Total energy of a very energetic and relativistic jetted Tidal Disruption Event (TDE)<ref>Template:Cite journal</ref> | ||||
~1047 J | Upper limit of collimated- corrected total energy of a gamma-ray burst<ref>Template:Cite journal</ref><ref>Template:Cite journal</ref><ref>Template:Cite journal</ref> | ||||
1.8×1047Template:NbspJ | Theoretical total mass–energy of the Sun<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> | ||
5.4×1047Template:NbspJ | Mass–energy emitted as gravitational waves during the merger of two black holes, originally about 30 Solar masses each, as observed by LIGO (GW150914)<ref>Template:Cite journal</ref> | ||||
8.6×1047Template:NbspJ | Mass–energy emitted as gravitational waves during the most energetic black hole merger observed until 2020 (GW170729)<ref>If GW190521 is a boson star merging, the present one remains the largest. See note [246][247]</ref> | ||||
8.8×1047Template:NbspJ | GRB 080916C – formerly the most powerful gamma-ray burst (GRB) ever recorded – total/true<ref name=":2">It is important to specify that the energetic reduction for beaming (invoked to explain so much energetics and jet breaks) is expected in the "Fireball model", which is the traditional one; other main models explain both Long and Short GRBs with binary systems, such as "Induced Gravitational Collapse", "Binary-Driven Hypernovae" which refer to the "Fireshell" one, in which cases the beaming isn't assumpted and the isotropic energy is a real value of energy due to the rotational energy of the stellar black hole and vacuum polarization in an electromagnetic field, which are able to explain energetics up and over 1047 J</ref> isotropic energy output estimated at 8.8 × 1047 joules (8.8 × 1054 erg), or 4.9 times the Sun's mass turned to energy<ref>Template:Cite arXiv</ref> | ||||
1048 | 1048 J | Estimated energy of a supermassive Population III star supernova, denominated "General Relativistic Instability Supernova."<ref>Template:Cite journal</ref><ref>Template:Cite journal</ref> | |||
~1.2×1048 J | Approximate energy released in the most energetic black hole merging to date (GW190521), which originated the first intermediate-mass black hole ever detected<ref>Assuming the uncertainties about the masses of the objects, the values of the LIGO Data are taken in consideration; so we have a newborn black hole with about 142 solar masses and the conversion in gravitational waves of about 7 solar masses</ref><ref>Template:Cite journal</ref><ref>Template:Cite journal</ref><ref>A research claims that this is instead a boson stars merging with approximately 8 times more probability than the black hole case; if so, the existence and the collision of boson stars there would be confirmed together. Furthermore, the energy released and the distance would be reduced.[3]
See the following note for the link of the research</ref><ref>Template:Cite journal</ref> | ||||
1.2–3×1048 J | GRB 221009A – the most powerful gamma-ray burst (GRB) ever recorded – total/true<ref name=":2" /><ref>Template:Cite journal</ref> isotropic energy output estimated at 1.2–3 × 1048 joules (1.2–3 × 1055 erg)<ref name=":0">Template:Cite journal</ref><ref>Template:Cite journal</ref><ref>Template:Cite journal</ref> | ||||
1050 | ≳1050 J | Upper limit of isotropic energy (Eiso) of Population III stars Gamma-Ray Bursts (GRBs).<ref>Template:Cite journal</ref> | |||
1053 | >1053 J | Mechanical energy of very energetic so-called "quasar tsunamis"<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>To determinate this value, the maximum energy of 1047 J for gamma-ray burts is taken in consideration; then six orders of magnitude are added, equivalent to ten million of years, the time frame in which the quasar tsunami will exceed the GRBs energetics over 1 million of times, according to the Nahum Arav's statement in the previous note</ref> | ||
6×1053Template:NbspJ | Total mechanical energy or enthalpy in the powerful AGN outburst in the RBS 797<ref>Template:Cite journal</ref> | ||||
7.65×1053Template:NbspJ | Mass-energy of Sagittarius A*, Milky Way's central supermassive black hole<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Template:Cite journal</ref> | |||
1054 | 3×1054Template:NbspJ | Total mechanical energy or enthalpy in the powerful AGN outburst in the Hercules A (3C 348)<ref>Template:Cite journal</ref> | |||
1055 | >1055Template:NbspJ | Total mechanical energy or enthalpy in the powerful AGN outburst in the MS 0735.6+7421,<ref>Template:Cite journal</ref> Ophiucus Supercluster Explosion<ref>Template:Cite journal</ref> and supermassive black holes mergings<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> | |
1057 | ~1057 J | Estimated rotational energy of M87 SMBH and total energy of the most luminous quasars over Gyr time-scales<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Template:Cite journal</ref> | ||
~2×1057 J | Estimated thermal energy of the Bullet Cluster of galaxies<ref>Template:Cite journal</ref> | ||||
7.3×1057 J | Mass-energy equivalent of the ultramassive black hole TON 618, an extremely luminous quasar / active galactic nucleus (AGN).<ref>Template:Cite journal</ref><ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | |||
1058 | ~1058 J | Estimated total energy (in shockwaves, turbulence, gases heating up, gravitational force) of galaxy clusters mergings<ref>Template:Cite journal</ref> | |||
4×1058Template:NbspJ | Visible mass–energy in our galaxy, the Milky Way<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> | ||
1059 | 1×1059Template:NbspJ | Total mass–energy of our galaxy, the Milky Way, including dark matter and dark energy<ref name=Karachentsev2006>Template:Cite journal</ref><ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref> | ||
1.4×1059Template:NbspJ | Mass-energy of the Andromeda galaxy (M31), ~0.8 trillion solar masses.<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> | ||
1062 | 1–2×1062Template:NbspJ | Total mass–energy of the Virgo Supercluster including dark matter, the Supercluster which contains the Milky Way<ref name="ein07">
Template:Cite journal</ref> | |||
1070 | 1.462×1070Template:NbspJ | Rough estimate of total mass–energy of ordinary matter (atoms; baryons) present in the observable universe.<ref>{{#invoke:citation/CS1|citation | CitationClass=web
}}</ref><ref>Details of calculation: WMAP 10 year survey's estimate of mass-energy density * volume of Observable Universe * percentage of which is ordinary matter: [9.9e-30 g/cm^3] * [3.566e+80 m^3] * [0.046] * [c^2] = 1.46e+70 Joules. </ref><ref name=":5">{{#invoke:citation/CS1|citation |
CitationClass=web
}}</ref> | |
1071 | 3.177×1071Template:NbspJ | citation | CitationClass=web
}}</ref><ref name=":5" /> |
SI multiplesEdit
Template:SI multiples Template:SI unit lowercase
See alsoEdit
- Conversion of units of energy
- Energy conversion efficiency
- Energy density
- Metric system
- Outline of energy
- Scientific notation
- TNT equivalent