Template:Short description Template:Speciesbox

Formica rufa, also known as the red wood ant, southern wood ant, or horse ant, is a boreal member of the Formica rufa group of ants, and is the type species for that group, being described already by Linnaeus.<ref name="Seifert, Bernhard, 2021" /> It is native to Eurasia, with a recorded distribution stretching from the middle of Scandinavia to the northern Iberia and Anatolia, and from Great Britain to Lake Baikal,<ref name="Stockan" /><ref name="Seifert, Bernhard, 2021">Template:Cite journal</ref> with unconfirmed reportings of it also to the Russian Far East.<ref name="Stockan">Template:Cite book</ref> There are claims that it can be found in North America,<ref name="Robinson">Template:Cite book</ref> but this is not confirmed in specialised literature,<ref name="Stockan" /> and no recent publication where North American wood ants are listed mentions it as present,<ref>Template:Cite journal</ref><ref name="Stockan" /> while records from North America are all listed as dubious or unconfirmed in a record compilation.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> The workers' heads and thoraces are colored red and the abdomen brownish-black, usually with dark patches on the head and promensonotum,<ref name="Collingwood">Template:Cite book</ref> although some individuals may be more uniform reddish and even have some red on the part of the gaster facing the body.<ref name="Seifert, Bernhard, 2021" /> In order to separate them from closely related species, specimens needs to be inspected under magnification, where difference in hairiness are among the telling characteristics, with Formica rufa being hairier than per example Formica polyctena but less hairy than Formica lugubris.<ref name="Seifert, Bernhard, 2021" /> Workers are polymorphic, measuring 4.5–9 mm in length.<ref name="Collingwood" /> They have large mandibles, and like many other ant species, they are able to spray formic acid from their abdomens as a defence.<ref name="Stockan" /> Formic acid was first extracted in 1671 by the English naturalist John Ray by distilling a large number of crushed ants of this species.<ref>Template:Cite book</ref> Adult wood ants primarily feed on honeydew from aphids. Some groups form large networks of connected nests with multiple queen colonies, while others have single-queen colonies.

DescriptionEdit

File:ForrmicaRufaWithCaterpillar.JPG
A caterpillar being bitten by F. rufa

Nests of these ants are large, conspicuous, dome-shaped mounds of grass, twigs, or conifer needles,<ref name="Robinson" /> often built against a rotting stump, usually situated in woodland clearings where the sun's rays can reach them. Large colonies may have 100,000 to 400,000 workers and 100 queens.<ref name="Robinson" /> F. rufa is highly polygynous and often readopts postnuptial queens from its own mother colony, leading to old, multigallery nests that may contain well over 100 egg-producing females. These colonies often may measure several metres in height and diameter. F. rufa is aggressively territorial, and often attacks and removes other ant species from the area. Nuptial flights take place during the springtime and are often marked by savage battles between neighbouring colonies as territorial boundaries are re-established.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> New nests are established by budding from existing nests in the spring,<ref name="Robinson" /> or by the mechanism of temporary social parasitism, the hosts being species of the F. fusca group, notably F. fusca and F. lemani, although incipient F. rufa colonies have also been recorded from nests of F. glebaria, F. cunnicularia. An F. rufa queen ousts the nest's existing queen, lays eggs, and the existing workers care for her offspring until the nest is taken over.

File:Formica rufa casent0173863 head 1.jpg
Detail of the head. Picture from antweb.org casent0173863

DietEdit

File:Ant-hill-in-Rila.jpg
F. rufa nest in meadow near Rila, Bulgaria

These ants' primary diet is aphid honeydew, but they also prey on invertebrates such as insects and arachnids;<ref name="Robinson" /> they are voracious scavengers. Foraging trails may extend 100 m.<ref name="Robinson" /> Larger workers have been observed to forage farther away from the nest.<ref>Template:Cite journal</ref> F. rufa commonly is used in forestry and often is introduced into an area as a form of pest management.

BehaviorEdit

NursingEdit

Worker ants in F. rufa have been observed to practice parental care or perform cocoon nursing. A worker ant goes through a sensitive phase, where it becomes accustomed to a chemical stimulus emitted by the cocoon. The sensitive phase occurs at an early and specific period. An experiment was conducted by Moli et al. to test how worker ants react to different types of cocoon: homospecific and heterospecific cocoons. If the worker ant is brought up in the absence of cocoons, it will show neither recognition nor nursing behaviour. Both types of cocoons are opened up by the workers and devoured for nutrients. When accustomed to only the homospecific cocoons, the workers collect both types of cocoons, but only place and protect the homospecific cocoons. The heterospecific cocoons are neglected and abandoned in the nest and eaten. Lastly, if heterospecific cocoons were injected with extract from the homospecific cocoons, the workers tend to both types of cocoons equally. This demonstrates that a chemical stimulus from the cocoons seems to be of paramount importance in prompting adoption behaviour in worker ants. However, the specific chemical / stimulus has not been identified.<ref>Template:Cite journal</ref>

Foraging behaviourEdit

The foraging behaviour of wood ants changes according to the environment. Wood ants have been shown to tend and harvest aphids and prey on and compete with, other predators for food resources. They tend to prey on the most plentiful members of the community whether they are in the canopies of trees or in the forest foliage. Wood ants seem to favour prey that lives in local canopies near their nest; however, when food resources dwindle, they seek other trees further from the nests and explore more trees instead of exploring the forest floor more thoroughly.<ref>Template:Cite journal</ref> This makes foraging for food significantly less efficient, but the rest of the nest does not help the foraging ants.<ref name="Skinner, G. J. 1981">Template:Cite journal</ref>

Kin behaviourEdit

Wood ants have shown aggressive behaviour toward their own species in certain situations.<ref name="Skinner, G. J. 1981"/><ref>Template:Cite journal</ref> Intraspecific competition usually occurs early in the spring between workers of competing nests. This aggression may be linked to the protection of maintaining territory and trail. By observing skirmishes and trail formation of wood ants, the territory surrounding each nest differs between seasons. Permanent foraging trails are reinforced each season, and if an ant from an alien species crossed it, hostile activity occurs. Most likely, the territory changes based on foraging patterns are influenced by seasonal changes.<ref name="Skinner, G. J. 1981"/>

Ants recognize their nestmates through chemical signals. Failure in recognition causes the colony integrity to decay. Heavy metals accumulated through the environment alter the aggression levels.<ref>Template:Cite journal</ref> This could be due to a variety of factors such as changes in physiological effect or changes in resource levels. The ants in these territories tend to be less productive and efficient. Increased resource competition would be expected to increase level of aggression, but this is not the case.

RaidingEdit

Wood ants, particularly those in the Formica species, perform organised and planned attacks on other ant colonies or insects. These planned attacks are motivated by territory expansion, resource acquisition, and brood capture.<ref name=":5" /><ref name=":6">Template:Cite journal</ref> Raids are performed at certain times of the year, when resources may need restocking, and during the day when ants are most active.<ref name=":6" /><ref name=":4">Template:Cite journal</ref> Organised and cooperative strategies for raiding are more specific tactics used by the Formica polyctena species. However, raiding is still an integral behaviour of the Formica rufa group. Scouts will investigate neighbouring nests to raid, marking their targets using pheromones.<ref>Template:Cite journal</ref> Wood ants are also capable of counterattack/defending retaliation. Strong defensive measures include guarding entrances to tunnels and having routine patrols of the areas to watch neighbouring nests.<ref>Template:Cite journal</ref> Some wood ant species, such as Formica sanguinea, will raid brood, which is then integrated into their colony as workers.<ref name=":6" /> This behaviour enables the colony to bolster its workforce without expending energy on raising its brood. The captured brood matures and functions within the raiding colony, helping with foraging and nest maintenance tasks.<ref name=":6" />

Raiding has significant evolutionary and ecological implications. This behaviour can establish dominance hierarchies among colonies and influence the structure of ant communities.<ref name=":6" /> Raiding contributes to the success of dominant species by providing access to resources that might otherwise be difficult to obtain.<ref name=":6" /> This behaviour also reflects the ants’ ability to adapt their foraging strategies to varying environmental conditions. Wood ants can also alter the distribution of resources in the ecosystem by dominating key food sources.

Resin useEdit

Wood ants intently collect resins from coniferous trees and incorporate them into their nests for various uses. Resin provides wood ants with structural soundness and predator defense to their nests and antimicrobial, antifungal, and pathogen defense when in conjunction with formic acid from their venom gland.<ref name=":0">Template:Cite journal</ref><ref name=":1">Template:Cite journal</ref><ref name=":2">Template:Cite journal</ref>

By leveraging the antimicrobial properties of the resin, wood ants are adequately ensuring and sustaining the health of their colonies.<ref name=":2" /><ref>Template:Cite journal</ref> Wood ant nests are vulnerable to rapidly spreading microbial loads due to the dense population and organic debris accumulation within large, complex structures. Terpenes and phenolic acids found in coniferous tree resins provide antimicrobial defense and inhibit the growth of pathogens within the nests when mixed with the ants' formic acid.<ref name=":4" /><ref name=":3">Template:Cite journal</ref><ref>Template:Cite journal</ref> Nests that have been fortified by resin have significantly less microbial diversity when compared to nests without resin.<ref name=":2" /><ref name=":3" /><ref name="dx.doi.org">Template:Cite journal</ref> By managing their environment, wood ants are proficiently protecting the health of their colonies, with the direct advantages of protecting the queen and developing brood with decreased pathogen exposure.<ref name=":0" /><ref name=":1" /><ref name=":2" />

Besides antifungal and microbial defense, resin provides value structural integrity to the nest and a protective barrier from potential intruders and predators. Wood ant nests are vulnerable to numerous external threats as they are often large, complex, and above ground. By binding the resin to other organic materials, the nest is provided with cohesive building material, making the nest less prone to collapse.<ref name=":4" />  Incorporating resin also provides nests with waterproofing and weather resistance, another way to prevent fungal growth.<ref name=":4" /><ref name="dx.doi.org"/> The stickiness and sometimes toxicity of the resin aid in providing a protective barrier against small arthropods and mites that may attack the nest. Chemically, the resin provides camouflage and deters intruders that may use chemical cues to locate nests.<ref name=":5">Template:Cite journal</ref><ref name=":4" /><ref name=":0" /><ref>Template:Cite journal</ref>

Colony structureEdit

PolygynyEdit

Polygyny in wood ants (Formica genus) is a colony's social structure that contains multiple reproducing queens. Polygyny may have evolved to enhance colony survival in unstable environments as it allows wood ants to disperse across larger areas by establishing interconnected nests with several queens.<ref name=":7">Template:Cite journal</ref> This differs from the more commonly observed monogynous social structure of only one reproducing queen within a colony. This behaviour can lead to significant ecological, evolutionary, and colony-level consequences.<ref name=":7" />

Polygyny may have evolved to enhance colony survival in unstable environments as it allows wood ants to disperse across larger areas by establishing interconnected nests with several queens.<ref>Template:Cite journal</ref> This differs from a monogamous colony, as a single queen’s reproductive output limits the colony's growth. In a monogamous colony, a new queen will typically leave its nest by flight to find and establish a new nest away from the old one.<ref>Template:Cite journal</ref> In a polygynous colony, the new queen will establish its nest nearby, with worker ants helping to connect and create cooperative, large colonies. Polygyny allows for higher genetic diversity within the colony, making the colony less susceptible to pathogens and infections. These polygynous colonies have a more complex social hierarchy and can be more successful in certain ecological contexts because of the combined reproductive efforts of several queens.<ref name=":8">Template:Cite journal</ref>

Through polygyny, the wood ant colonies exhibit reduced levels of relatedness between workers, which can have negative and positive implications.<ref name=":8" /> A negative implication is that there can be reduced cooperation between the ants within a colony. However, this reduced level of cooperation is mitigated by the sheer scale of resources available to polygynous colonies. Besides higher genetic diversity, a positive implication is that the colony has faster growth in numbers due to multiple queens producing broods.<ref name=":4" /> With higher numbers, there are more ants to collect resources and carry out raids, but this also has drawbacks. Larger colonies put a lot of structural pressure on the above-ground nest that most wood ants have.<ref>Template:Cite journal</ref>

Nest splittingEdit

Wood ants typically have multiple nests so they may relocate in case of drastic changes in the environment. This splitting of nests causes the creation of multiple daughter nests. Several reasons occur as to why wood ants move. Such as a change in availability of food resources, attack by the population of another colony, or a change in the state of the nest itself. During this time, workers, queens, and the brood are transferred from the original nest to the daughter nest in a bilateral direction. The goal is to move to the daughter nest, but the transporting ants may bring an individual back to the original nest. The splitting process may last from a week to over a month.<ref>Template:Cite journal</ref>

PopulationEdit

Turnover rate of wood ant nests is very quick. Within a period of three years, Klimetzek counted 248 nests within a 1,640 hectare area under study. Furthermore, no evidence of a correlation between nest age and mortality was found. Smaller nests had lower life expectancy compared to larger nests. The size of the nests increased as the nest aged.<ref>Template:Cite journal</ref>

Bee paralysis virusEdit

In 2008, the chronic bee paralysis virus was reported for the first time in this and another species of ants, Camponotus vagus. CBPV affects bees, ants, and mites.<ref>Template:Cite journal</ref>

ReferencesEdit

Template:Reflist

External linksEdit

Template:Sister project

Template:Taxonbar Template:Authority control