Template:Short description The Hounsfield scale (Template:IPAc-en Template:Respell), named after Sir Godfrey Hounsfield, is a quantitative scale for describing radiodensity. It is frequently used in CT scans, where its value is also termed CT number.

DefinitionEdit

The Hounsfield unit (HU) scale is a linear transformation of the original linear attenuation coefficient measurement into one in which the radiodensity of distilled water at standard pressure and temperature (STP) is defined as 0 Hounsfield units (HU), while the radiodensity of air at STP is defined as −1000 HU. In a voxel with average linear attenuation coefficient <math>\mu</math>, the corresponding HU value is therefore given by:<ref>Template:Cite journal</ref><ref>Template:Cite journal</ref>

<math display=block>HU = 1000\times\frac{\mu - \mu_{\textrm{water}}}{\mu_{\textrm{water}} - \mu_{\textrm{air}}}</math>

where <math>\mu_{\textrm{water}}</math> and <math>\mu_{\textrm{air}}</math> are respectively the linear attenuation coefficients of water and air.

Thus, a change of one Hounsfield unit (HU) represents a change of 0.1% of the attenuation coefficient of water since the attenuation coefficient of air is nearly zero.<ref name="IAEADiagRadPhys">Template:Cite book</ref>Template:Rp

Calibration tests of HU with reference to water and other materials may be done to ensure standardised response. This is particularly important for CT scans used in radiotherapy treatment planning, where HU is converted to electron density.<ref>Template:Cite book</ref> Variation in the measured values of reference materials with known composition, and variation between and within slices may be used as part of test procedures.<ref name="IAEADiagRadPhys" />Template:Rp<ref>Template:Cite book</ref>

RationaleEdit

The above standards were chosen originally to encode the radiodensity of organic tissues relative to water for 12-bit processing on clinical CT scanners.<ref>Template:Cite journal</ref> A 12-bit encoding corresponds to 4096 (<math>2^{12}</math>) values, where the range (–1024 to 3071) encompasses HU values for air, soft tissue and bone.

Values for different body tissues and materialEdit

File:CT Scan Thorax Lung -700 HU Window Level.jpg
CT scan of the thorax with window level set to -700 HU (lung)
File:CT Scan Thorax Air -1000 HU Window Level.jpg
CT scan of the thorax with window level set to -1,000 HU (air)
File:CT Scan Thorax Water 0 HU Window Level.jpg
CT scan of the thorax with window level set to 0 HU (water)
File:CT Scan Thorax Liver 60 HU Window Level.jpg
CT scan of the thorax with window level set to 60 HU (liver)

HU-based differentiation of material applies to medical-grade dual-energy CT scans but not to cone beam computed tomography (CBCT) scans, as CBCT scans provide unreliable HU readings.<ref name="DEVOS">Template:Cite journal</ref>

Values reported here are approximations. Different dynamics are reported from one study to another.Template:Cn

Exact HU dynamics can vary from one CT acquisition to another due to CT acquisition and reconstruction parameters (kV, filters, reconstruction algorithms, etc.). The use of contrast agents modifies HU as well in some body parts (mainly blood).

Substance HU
Air −1000
Fat −120 to −90<ref name="Lepor2000" />
Soft tissue on contrast CT +100 to +300
Bone Cancellous +300 to +400<ref name="BirurPatrick2017">Template:Cite journal</ref>
Cortical +500 to +1900<ref>Template:Cite journal</ref><ref name="BirurPatrick2017" /><ref>Template:Cite journal</ref>
Subdural hematoma First hours +75 to +100<ref name="Rao2016">Fig 3 in: Template:Cite journal</ref>
After 3 days +65 to +85<ref name="Rao2016" />
After 10–14 days citation CitationClass=web

}}</ref>

Other blood Unclotted +13<ref name="fosbinder2011">Template:Cite book</ref> to +50<ref>Template:Cite book</ref>
Clotted +50<ref name="fast2006">Template:Cite book</ref> to +75<ref name="fosbinder2011" /><ref name="fast2006" />
Pleural effusion Transudate +2 to +15 <ref name="CulluKalemci2013">Template:Cite journal</ref>
Exudate +4 to +33<ref name="CulluKalemci2013" />
Other fluids Chyle −30<ref>Page 342 in: Template:Cite book</ref>
Water 0
Urine −5 to +15<ref name="Lepor2000">Page 83 in: Template:Cite book</ref>
Bile −5 to +15<ref name="Lepor2000" />
CSF +15
Abscess / Pus 0<ref name="ecr">Template:Cite journal</ref> or +20,<ref name="SasakiMiyata2014">Template:Cite journal</ref> to +40<ref name="SasakiMiyata2014" /> or +45<ref name="ecr" />
Mucus 0<ref>Template:Cite journalTemplate:Dead link</ref> - 130<ref name="GaetaVinci2001">Template:Cite journal</ref> ("high attenuating" at over 70 HU)<ref>Template:Cite journal</ref><ref name="AgarwalSehgal2016">Template:Cite journal</ref>
Parenchyma Lung −700 to −600<ref>Template:Cite book</ref>
Kidney +20 to +45<ref name="Lepor2000" />
Liver 60 ± 6<ref>Template:Cite book</ref>
Lymph nodes +10 to +20<ref>Template:Cite book</ref>
Muscle +35 to +55<ref name="Lepor2000" />
Thymus
  • +20 to +40 in children<ref name="givel2012">Template:Cite book</ref>
  • +20 to +120 in adolescents<ref name="givel2012" />
White matter +20 to +30
Grey matter +37 to +45
Gallstone Cholesterol stone +30 to +100<ref name="pmid2121509">Template:Cite journal</ref>
Bilirubin stone +90 to +120<ref name="pmid2121509" />
Foreign body<ref name="BolligerOesterhelweg2009">Template:Cite journal</ref> Windowpane glass +500
Aluminum, tarmac, car window glass, bottle glass, and other rocks +2,100 to +2,300
Limestone +2,800
Copper +14,000
Silver +17,000
Steel +20,000
Gold, steel, and brass +30,000 (upper measurable limit)
Earwax <0

A practical application of this is in evaluation of tumors, where, for example, an adrenal tumor with a radiodensity of less than 10 HU is rather fatty in composition and almost certainly a benign adrenal adenoma.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

See alsoEdit

ReferencesEdit

Template:Reflist

External linksEdit

  • {{#invoke:citation/CS1|citation

|CitationClass=web }}

|CitationClass=web }}

Template:Medical imaging