Template:Short description

File:Raisinbread.gif
An analogy for explaining Hubble's law, using raisins in a rising loaf of bread in place of galaxies. If a raisin is twice as far away from a place as another raisin, then the farther raisin would move away from that place twice as quickly.

Template:Cosmology Hubble's law, also known as the Hubble–Lemaître law,<ref>Template:Cite press release</ref> is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther a galaxy is from the Earth, the faster it moves away. A galaxy's recessional velocity is typically determined by measuring its redshift, a shift in the frequency of light emitted by the galaxy.

The discovery of Hubble's law is attributed to work published by Edwin Hubble in 1929,<ref>Template:Cite journal</ref><ref>Template:Cite journal</ref><ref>Template:Cite book</ref> but the notion of the universe expanding at a calculable rate was first derived from general relativity equations in 1922 by Alexander Friedmann. The Friedmann equations showed the universe might be expanding, and presented the expansion speed if that were the case.<ref>Template:Cite journal. (English translation in Template:Cite journal)</ref> Before Hubble, astronomer Carl Wilhelm Wirtz had, in 1922<ref name="Wirtz-1922">Template:Cite journal</ref> and 1924,<ref name="Wirtz-1924">Template:Cite journal</ref> deduced with his own data that galaxies that appeared smaller and dimmer had larger redshifts and thus that more distant galaxies recede faster from the observer. In 1927, Georges Lemaître concluded that the universe might be expanding by noting the proportionality of the recessional velocity of distant bodies to their respective distances. He estimated a value for this ratio, which—after Hubble confirmed cosmic expansion and determined a more precise value for it two years later—became known as the Hubble constant.<ref name="NYT-20170220" /><ref>Template:Cite journal Partially translated to English in Template:Cite journal</ref><ref name="Livio">Template:Cite journal</ref><ref>Template:Cite journal</ref><ref name=":1">Template:Cite journal</ref> Hubble inferred the recession velocity of the objects from their redshifts, many of which were earlier measured and related to velocity by Vesto Slipher in 1917.<ref>Template:Cite journal</ref><ref name="MS_Longair2">Template:Cite book</ref><ref>Template:Cite book</ref> Combining Slipher's velocities with Henrietta Swan Leavitt's intergalactic distance calculations and methodology allowed Hubble to better calculate an expansion rate for the universe.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

Hubble's law is considered the first observational basis for the expansion of the universe, and is one of the pieces of evidence most often cited in support of the Big Bang model.<ref name="NYT-20170220">Template:Cite news</ref><ref name="Coles">Template:Cite book</ref> The motion of astronomical objects due solely to this expansion is known as the Hubble flow.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> It is described by the equation Template:Math, with Template:Math the constant of proportionality—the Hubble constant—between the "proper distance" Template:Mvar to a galaxy (which can change over time, unlike the comoving distance) and its speed of separation Template:Mvar, i.e. the derivative of proper distance with respect to the cosmic time coordinate.Template:Efn Though the Hubble constant Template:Math is constant at any given moment in time, the Hubble parameter Template:Mvar, of which the Hubble constant is the current value, varies with time, so the term constant is sometimes thought of as somewhat of a misnomer.<ref name="NYT-20190225">Template:Cite news</ref><ref>Template:Cite book</ref>

The Hubble constant is most frequently quoted in km/s/Mpc, which gives the speed of a galaxy Template:Convert away as Template:Nobr. Simplifying the units of the generalized form reveals that Template:Math specifies a frequency (SI unit: s−1), leading the reciprocal of Template:Math to be known as the Hubble time (14.4 billion years). The Hubble constant can also be stated as a relative rate of expansion. In this form Template:Math = 7%/Gyr, meaning that, at the current rate of expansion, it takes one billion years for an unbound structure to grow by 7%.

DiscoveryEdit

A decade before Hubble made his observations, a number of physicists and mathematicians had established a consistent theory of an expanding universe by using Einstein field equations of general relativity. Applying the most general principles to the nature of the universe yielded a dynamic solution that conflicted with the then-prevalent notion of a static universe.

Slipher's observationsEdit

In 1912, Vesto M. Slipher measured the first Doppler shift of a "spiral nebula" (the obsolete term for spiral galaxies) and soon discovered that almost all such objects were receding from Earth. He did not grasp the cosmological implications of this fact, and indeed at the time it was highly controversial whether or not these nebulae were "island universes" outside the Milky Way galaxy.<ref>Template:Cite journal</ref><ref>Template:Cite journal</ref>

FLRW equationsEdit

{{#invoke:Labelled list hatnote|labelledList|Main article|Main articles|Main page|Main pages}} In 1922, Alexander Friedmann derived his Friedmann equations from Einstein field equations, showing that the universe might expand at a rate calculable by the equations.<ref>Template:Cite journal Translated to English in Template:Cite journal</ref> The parameter used by Friedmann is known today as the scale factor and can be considered as a scale invariant form of the proportionality constant of Hubble's law. Georges Lemaître independently found a similar solution in his 1927 paper discussed in the following section. The Friedmann equations are derived by inserting the metric for a homogeneous and isotropic universe into Einstein's field equations for a fluid with a given density and pressure. This idea of an expanding spacetime would eventually lead to the Big Bang and Steady State theories of cosmology.

Lemaître's equationEdit

In 1927, two years before Hubble published his own article, the Belgian priest and astronomer Georges Lemaître was the first to publish research deriving what is now known as Hubble's law. According to the Canadian astronomer Sidney van den Bergh, "the 1927 discovery of the expansion of the universe by Lemaître was published in French in a low-impact journal. In the 1931 high-impact English translation of this article, a critical equation was changed by omitting reference to what is now known as the Hubble constant."<ref>Template:Cite journal</ref> It is now known that the alterations in the translated paper were carried out by Lemaître himself.<ref name = Livio /><ref>Template:Cite book</ref>

Shape of the universeEdit

Before the advent of modern cosmology, there was considerable talk about the size and shape of the universe. In 1920, the Shapley–Curtis debate took place between Harlow Shapley and Heber D. Curtis over this issue. Shapley argued for a small universe the size of the Milky Way galaxy, and Curtis argued that the universe was much larger. The issue was resolved in the coming decade with Hubble's improved observations.

Cepheid variable stars outside the Milky WayEdit

Edwin Hubble did most of his professional astronomical observing work at Mount Wilson Observatory,<ref>Template:Cite journal</ref> home to the world's most powerful telescope at the time. His observations of Cepheid variable stars in "spiral nebulae" enabled him to calculate the distances to these objects. Surprisingly, these objects were discovered to be at distances which placed them well outside the Milky Way. They continued to be called nebulae, and it was only gradually that the term galaxies replaced it.

Combining redshifts with distance measurementsEdit

File:Hubble constant.JPG
Fit of redshift velocities to Hubble's law.<ref name="Keel">Template:Cite book</ref> Various estimates for the Hubble constant exist.

The velocities and distances that appear in Hubble's law are not directly measured. The velocities are inferred from the redshift Template:Math of radiation and distance is inferred from brightness. Hubble sought to correlate brightness with parameter Template:Mvar.

Combining his measurements of galaxy distances with Vesto Slipher and Milton Humason's measurements of the redshifts associated with the galaxies, Hubble discovered a rough proportionality between redshift of an object and its distance. Though there was considerable scatter (now known to be caused by peculiar velocities—the 'Hubble flow' is used to refer to the region of space far enough out that the recession velocity is larger than local peculiar velocities), Hubble was able to plot a trend line from the 46 galaxies he studied and obtain a value for the Hubble constant of 500 (km/s)/Mpc (much higher than the currently accepted value due to errors in his distance calibrations; see cosmic distance ladder for details).<ref name=damnh/>

Hubble diagramEdit

Hubble's law can be easily depicted in a "Hubble diagram" in which the velocity (assumed approximately proportional to the redshift) of an object is plotted with respect to its distance from the observer.<ref>Template:Cite journal</ref> A straight line of positive slope on this diagram is the visual depiction of Hubble's law.

Cosmological constant abandonedEdit

{{#invoke:Labelled list hatnote|labelledList|Main article|Main articles|Main page|Main pages}} After Hubble's discovery was published, Albert Einstein abandoned his work on the cosmological constant, a term he had inserted into his equations of general relativity to coerce them into producing the static solution he previously considered the correct state of the universe. The Einstein equations in their simplest form model either an expanding or contracting universe, so Einstein introduced the constant to counter expansion or contraction and lead to a static and flat universe.<ref name="mapcc">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> After Hubble's discovery that the universe was, in fact, expanding, Einstein called his faulty assumption that the universe is static his "greatest mistake".<ref name=mapcc /> On its own, general relativity could predict the expansion of the universe, which (through observations such as the bending of light by large masses, or the precession of the orbit of Mercury) could be experimentally observed and compared to his theoretical calculations using particular solutions of the equations he had originally formulated.

In 1931, Einstein went to Mount Wilson Observatory to thank Hubble for providing the observational basis for modern cosmology.<ref>Template:Cite book</ref>

The cosmological constant has regained attention in recent decades as a hypothetical explanation for dark energy.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

Template:Anchor

InterpretationEdit

File:Velocity-redshift.JPG
A variety of possible recessional velocity vs. redshift functions including the simple linear relation Template:Math; a variety of possible shapes from theories related to general relativity; and a curve that does not permit speeds faster than light in accordance with special relativity. All curves are linear at low redshifts.<ref name="D&L">Template:Cite journal</ref>

The discovery of the linear relationship between redshift and distance, coupled with a supposed linear relation between recessional velocity and redshift, yields a straightforward mathematical expression for Hubble's law as follows:

<math display="block">v = H_0 \, D</math>

where

Hubble's law is considered a fundamental relation between recessional velocity and distance. However, the relation between recessional velocity and redshift depends on the cosmological model adopted and is not established except for small redshifts.

For distances Template:Mvar larger than the radius of the Hubble sphere Template:Math, objects recede at a rate faster than the speed of light (See Uses of the proper distance for a discussion of the significance of this):

<math display="block">r_\text{HS} = \frac{c}{H_0} \ . </math>

Since the Hubble "constant" is a constant only in space, not in time, the radius of the Hubble sphere may increase or decrease over various time intervals. The subscript '0' indicates the value of the Hubble constant today.<ref name=Keel/> Current evidence suggests that the expansion of the universe is accelerating (see Accelerating universe), meaning that for any given galaxy, the recession velocity Template:Mvar is increasing over time as the galaxy moves to greater and greater distances; however, the Hubble parameter is actually thought to be decreasing with time, meaning that if we were to look at some Template:Em distance Template:Mvar and watch a series of different galaxies pass that distance, later galaxies would pass that distance at a smaller velocity than earlier ones.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

Redshift velocity and recessional velocityEdit

Redshift can be measured by determining the wavelength of a known transition, such as hydrogen α-lines for distant quasars, and finding the fractional shift compared to a stationary reference. Thus, redshift is a quantity unambiguously acquired from observation. Care is required, however, in translating these to recessional velocities: for small redshift values, a linear relation of redshift to recessional velocity applies, but more generally the redshift-distance law is nonlinear, meaning the co-relation must be derived specifically for each given model and epoch.<ref name="Harrison">Template:Cite journal</ref>

Redshift velocityEdit

The redshift Template:Mvar is often described as a redshift velocity, which is the recessional velocity that would produce the same redshift Template:Em it were caused by a linear Doppler effect (which, however, is not the case, as the velocities involved are too large to use a non-relativistic formula for Doppler shift). This redshift velocity can easily exceed the speed of light.<ref name="Madsen">Template:Cite book</ref> In other words, to determine the redshift velocity Template:Math, the relation:

<math display="block"> v_\text{rs} \equiv cz,</math>

is used.<ref name="Dekel">Template:Cite book</ref><ref name="Padmanabhan">Template:Cite book</ref> That is, there is Template:Em between redshift velocity and redshift: they are rigidly proportional, and not related by any theoretical reasoning. The motivation behind the "redshift velocity" terminology is that the redshift velocity agrees with the velocity from a low-velocity simplification of the so-called Fizeau–Doppler formula<ref name="Sartori">Template:Cite book</ref>

<math display="block">z = \frac{\lambda_\text{o}}{\lambda_\text{e}}-1 = \sqrt{\frac{1+\frac{v}{c}}{1-\frac{v}{c}}}-1 \approx \frac{v}{c}.</math>

Here, Template:Math, Template:Math are the observed and emitted wavelengths respectively. The "redshift velocity" Template:Math is not so simply related to real velocity at larger velocities, however, and this terminology leads to confusion if interpreted as a real velocity. Next, the connection between redshift or redshift velocity and recessional velocity is discussed.<ref name="L_Sartori">Template:Cite book</ref>

Recessional velocityEdit

Suppose Template:Math is called the scale factor of the universe, and increases as the universe expands in a manner that depends upon the cosmological model selected. Its meaning is that all measured proper distances Template:Math between co-moving points increase proportionally to Template:Mvar. (The co-moving points are not moving relative to their local environments.) In other words:

<math display="block">\frac {D(t)}{D(t_0)} = \frac{R(t)}{R(t_0)},</math>

where Template:Math is some reference time.<ref>Matts Roos, Introduction to Cosmology</ref> If light is emitted from a galaxy at time Template:Math and received by us at Template:Math, it is redshifted due to the expansion of the universe, and this redshift Template:Mvar is simply:

<math display="block">z = \frac {R(t_0)}{R(t_\text{e})} - 1. </math>

Suppose a galaxy is at distance Template:Mvar, and this distance changes with time at a rate Template:Mvar. We call this rate of recession the "recession velocity" Template:Math:

<math display="block">v_\text{r} = d_tD = \frac {d_tR}{R} D. </math>

We now define the Hubble constant as

<math display="block">H \equiv \frac{d_tR}{R}, </math>

and discover the Hubble law:

<math display="block"> v_\text{r} = H D. </math>

From this perspective, Hubble's law is a fundamental relation between (i) the recessional velocity associated with the expansion of the universe and (ii) the distance to an object; the connection between redshift and distance is a crutch used to connect Hubble's law with observations. This law can be related to redshift Template:Mvar approximately by making a Taylor series expansion:

<math display="block"> z = \frac {R(t_0)}{R(t_e)} - 1 \approx \frac {R(t_0)} {R(t_0)\left(1+(t_e-t_0)H(t_0)\right)}-1 \approx (t_0-t_e)H(t_0), </math>

If the distance is not too large, all other complications of the model become small corrections, and the time interval is simply the distance divided by the speed of light:

<math display="block"> z \approx (t_0-t_\text{e})H(t_0) \approx \frac {D}{c} H(t_0), </math>

or

<math display="block"> cz \approx D H(t_0) = v_r. </math>

According to this approach, the relation Template:Math is an approximation valid at low redshifts, to be replaced by a relation at large redshifts that is model-dependent. See velocity-redshift figure.

Observability of parametersEdit

Strictly speaking, neither Template:Mvar nor Template:Mvar in the formula are directly observable, because they are properties Template:Em of a galaxy, whereas our observations refer to the galaxy in the past, at the time that the light we currently see left it.

For relatively nearby galaxies (redshift Template:Mvar much less than one), Template:Mvar and Template:Mvar will not have changed much, and Template:Mvar can be estimated using the formula Template:Math where Template:Mvar is the speed of light. This gives the empirical relation found by Hubble.

For distant galaxies, Template:Mvar (or Template:Mvar) cannot be calculated from Template:Mvar without specifying a detailed model for how Template:Mvar changes with time. The redshift is not even directly related to the recession velocity at the time the light set out, but it does have a simple interpretation: Template:Math is the factor by which the universe has expanded while the photon was traveling towards the observer.

Expansion velocity vs. peculiar velocityEdit

In using Hubble's law to determine distances, only the velocity due to the expansion of the universe can be used. Since gravitationally interacting galaxies move relative to each other independent of the expansion of the universe,<ref name="AM-20170818">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> these relative velocities, called peculiar velocities, need to be accounted for in the application of Hubble's law. Such peculiar velocities give rise to redshift-space distortions.

Time-dependence of Hubble parameterEdit

The parameter Template:Mvar is commonly called the "Hubble constant", but that is a misnomer since it is constant in space only at a fixed time; it varies with time in nearly all cosmological models, and all observations of far distant objects are also observations into the distant past, when the "constant" had a different value. "Hubble parameter" is a more correct term, with Template:Math denoting the present-day value.

Another common source of confusion is that the accelerating universe does Template:Em imply that the Hubble parameter is actually increasing with time; since Template:Nowrap in most accelerating models <math>a</math> increases relatively faster than Template:Nowrap so Template:Mvar decreases with time. (The recession velocity of one chosen galaxy does increase, but different galaxies passing a sphere of fixed radius cross the sphere more slowly at later times.)

On defining the dimensionless deceleration parameter Template:Nowrap it follows that

<math display="block"> \frac{dH}{dt} = -H^2 (1+q) </math>

From this it is seen that the Hubble parameter is decreasing with time, unless Template:Math; the latter can only occur if the universe contains phantom energy, regarded as theoretically somewhat improbable.

However, in the standard Lambda cold dark matter model (Lambda-CDM or ΛCDM model), Template:Mvar will tend to −1 from above in the distant future as the cosmological constant becomes increasingly dominant over matter; this implies that Template:Mvar will approach from above to a constant value of ≈ 57 (km/s)/Mpc, and the scale factor of the universe will then grow exponentially in time.

Idealized Hubble's lawEdit

The mathematical derivation of an idealized Hubble's law for a uniformly expanding universe is a fairly elementary theorem of geometry in 3-dimensional Cartesian/Newtonian coordinate space, which, considered as a metric space, is entirely homogeneous and isotropic (properties do not vary with location or direction). Simply stated, the theorem is this:

<templatestyles src="Template:Blockquote/styles.css" />

Any two points which are moving away from the origin, each along straight lines and with speed proportional to distance from the origin, will be moving away from each other with a speed proportional to their distance apart.{{#if:|{{#if:|}}

}}

{{#invoke:Check for unknown parameters|check|unknown=Template:Main other|preview=Page using Template:Blockquote with unknown parameter "_VALUE_"|ignoreblank=y| 1 | 2 | 3 | 4 | 5 | author | by | char | character | cite | class | content | multiline | personquoted | publication | quote | quotesource | quotetext | sign | source | style | text | title | ts }}

In fact, this applies to non-Cartesian spaces as long as they are locally homogeneous and isotropic, specifically to the negatively and positively curved spaces frequently considered as cosmological models (see shape of the universe).

An observation stemming from this theorem is that seeing objects recede from us on Earth is not an indication that Earth is near to a center from which the expansion is occurring, but rather that Template:Em observer in an expanding universe will see objects receding from them.

Ultimate fate and age of the universeEdit

File:Friedmann universes.svg
The age and ultimate fate of the universe can be determined by measuring the Hubble constant today and extrapolating with the observed value of the deceleration parameter, uniquely characterized by values of density parameters (Template:Math for matter and Template:Math for dark energy).
A closed universe with Template:Math and Template:Math comes to an end in a Big Crunch and is considerably younger than its Hubble age.
An open universe with Template:Math and Template:Math expands forever and has an age that is closer to its Hubble age. For the accelerating universe with nonzero Template:Math that we inhabit, the age of the universe is coincidentally very close to the Hubble age.

The value of the Hubble parameter changes over time, either increasing or decreasing depending on the value of the so-called deceleration parameter Template:Mvar, which is defined by

<math display="block">q = -\left(1+\frac{\dot H}{H^2}\right).</math>

In a universe with a deceleration parameter equal to zero, it follows that Template:Math, where Template:Mvar is the time since the Big Bang. A non-zero, time-dependent value of Template:Mvar simply requires integration of the Friedmann equations backwards from the present time to the time when the comoving horizon size was zero.

It was long thought that Template:Mvar was positive, indicating that the expansion is slowing down due to gravitational attraction. This would imply an age of the universe less than Template:Math (which is about 14 billion years). For instance, a value for Template:Mvar of 1/2 (once favoured by most theorists) would give the age of the universe as Template:Math. The discovery in 1998 that Template:Mvar is apparently negative means that the universe could actually be older than Template:Math. However, estimates of the age of the universe are very close to Template:Math.

Olbers' paradoxEdit

{{#invoke:Labelled list hatnote|labelledList|Main article|Main articles|Main page|Main pages}} The expansion of space summarized by the Big Bang interpretation of Hubble's law is relevant to the old conundrum known as Olbers' paradox: If the universe were infinite in size, static, and filled with a uniform distribution of stars, then every line of sight in the sky would end on a star, and the sky would be as bright as the surface of a star. However, the night sky is largely dark.<ref name="Chase_etal_2004">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref><ref name="Asimov1974">Template:Cite book</ref>

Since the 17th century, astronomers and other thinkers have proposed many possible ways to resolve this paradox, but the currently accepted resolution depends in part on the Big Bang theory, and in part on the Hubble expansion: in a universe that existed for a finite amount of time, only the light of a finite number of stars has had enough time to reach us, and the paradox is resolved. Additionally, in an expanding universe, distant objects recede from us, which causes the light emanated from them to be redshifted and diminished in brightness by the time we see it.<ref name=Chase_etal_2004/><ref name=Asimov1974/>

Dimensionless Hubble constantEdit

Instead of working with Hubble's constant, a common practice is to introduce the dimensionless Hubble constant, usually denoted by Template:Mvar and commonly referred to as "little h",<ref name=damnh>Template:Cite journal</ref> then to write Hubble's constant Template:Math as Template:Math, all the relative uncertainty of the true value of Template:Math being then relegated to Template:Mvar.<ref>Template:Cite book</ref> The dimensionless Hubble constant is often used when giving distances that are calculated from redshift Template:Mvar using the formula Template:Math. Since Template:Math is not precisely known, the distance is expressed as:

<math display="block">cz/H_0\approx(2998\times z)\text{ Mpc }h^{-1}</math>

In other words, one calculates 2998 × Template:Mvar and one gives the units as Mpc Template:Math or Template:Math Mpc.

Occasionally a reference value other than 100 may be chosen, in which case a subscript is presented after Template:Mvar to avoid confusion; e.g. Template:Math denotes Template:Math Template:Val, which implies Template:Math.

This should not be confused with the dimensionless value of Hubble's constant, usually expressed in terms of Planck units, obtained by multiplying Template:Math by Template:Val (from definitions of parsec and [[Planck time|Template:Math]]), for example for Template:Math, a Planck unit version of Template:Val is obtained.

Acceleration of the expansionEdit

{{#invoke:Labelled list hatnote|labelledList|Main article|Main articles|Main page|Main pages}} A value for Template:Mvar measured from standard candle observations of Type Ia supernovae, which was determined in 1998 to be negative, surprised many astronomers with the implication that the expansion of the universe is currently "accelerating"<ref>Template:Cite journal</ref> (although the Hubble factor is still decreasing with time, as mentioned above in the Interpretation section; see the articles on dark energy and the ΛCDM model).

Derivation of the Hubble parameterEdit

Template:More citations needed section

Start with the Friedmann equation:

<math display="block">H^2 \equiv \left(\frac{\dot{a}}{a}\right)^2 = \frac{8 \pi G}{3}\rho - \frac{kc^2}{a^2}+ \frac{\Lambda c^2}{3},</math>

where Template:Mvar is the Hubble parameter, Template:Mvar is the scale factor, Template:Mvar is the gravitational constant, Template:Mvar is the normalised spatial curvature of the universe and equal to −1, 0, or 1, and Template:Math is the cosmological constant.

Matter-dominated universe (with a cosmological constant)Edit

If the universe is matter-dominated, then the mass density of the universe Template:Mvar can be taken to include just matter so

<math display="block">\rho = \rho_m(a) = \frac{\rho_{m_{0}}}{a^3},</math>

where Template:Math is the density of matter today. From the Friedmann equation and thermodynamic principles we know for non-relativistic particles that their mass density decreases proportional to the inverse volume of the universe, so the equation above must be true. We can also define (see density parameter for Template:Math)

<math display="block">\begin{align} \rho_c &= \frac{3 H_0^2}{8 \pi G}; \\ \Omega_m &\equiv \frac{\rho_{m_{0}}}{\rho_c} = \frac{8 \pi G}{3 H_0^2}\rho_{m_{0}}; \end{align}</math>

therefore:

<math display="block">\rho=\frac{\rho_c \Omega_m}{a^3}.</math>

Also, by definition, <math display="block">\begin{align} \Omega_k &\equiv \frac{-kc^2}{(a_0H_0)^2} \\ \Omega_{\Lambda} &\equiv \frac{\Lambda c^2}{3H_0^2}, \end{align}</math>

where the subscript Template:Math refers to the values today, and Template:Math. Substituting all of this into the Friedmann equation at the start of this section and replacing Template:Mvar with Template:Math gives

<math display="block">H^2(z)= H_0^2 \left( \Omega_m (1+z)^{3} + \Omega_k (1+z)^{2} + \Omega_{\Lambda} \right).</math>

Matter- and dark energy-dominated universeEdit

If the universe is both matter-dominated and dark energy-dominated, then the above equation for the Hubble parameter will also be a function of the equation of state of dark energy. So now:

<math display="block">\rho = \rho_m (a)+\rho_{de}(a),</math>

where Template:Mvar is the mass density of the dark energy. By definition, an equation of state in cosmology is Template:Math, and if this is substituted into the fluid equation, which describes how the mass density of the universe evolves with time, then

<math display="block">\begin{align} \dot{\rho}+3\frac{\dot{a}}{a}\left(\rho+\frac{P}{c^2}\right)=0;\\ \frac{d\rho}{\rho}=-3\frac{da}{a}(1+w). \end{align}</math>

If Template:Mvar is constant, then

<math display="block">\ln{\rho}=-3(1+w)\ln{a};</math>

implying:

<math display="block">\rho=a^{-3(1+w)}.</math>

Therefore, for dark energy with a constant equation of state Template:Mvar, Template:Nowrap If this is substituted into the Friedman equation in a similar way as before, but this time set Template:Math, which assumes a spatially flat universe, then (see shape of the universe)

<math display="block">H^2(z)= H_0^2 \left( \Omega_m (1+z)^{3} + \Omega_{de}(1+z)^{3(1+w)} \right).</math>

If the dark energy derives from a cosmological constant such as that introduced by Einstein, it can be shown that Template:Math. The equation then reduces to the last equation in the matter-dominated universe section, with Template:Math set to zero. In that case the initial dark energy density Template:Math is given by<ref>Template:Cite book</ref>

<math display="block">\begin{align} \rho_{de0} &= \frac{\Lambda c^2}{8 \pi G} \,, \\ \Omega_{de} &=\Omega_{\Lambda}. \end{align}</math>

If dark energy does not have a constant equation-of-state Template:Mvar, then

<math display="block">\rho_{de}(a)= \rho_{de0}e^{-3\int\frac{da}{a}\left(1+w(a)\right)},</math>

and to solve this, Template:Math must be parametrized, for example if Template:Math, giving<ref>Template:Cite journal</ref>

<math display="block">H^2(z)= H_0^2 \left( \Omega_m a^{-3} + \Omega_{de}a^{-3\left(1+w_0 +w_a \right)}e^{-3w_a(1-a)} \right).</math>

Units derived from the Hubble constantEdit

Hubble timeEdit

The Hubble constant Template:Math has units of inverse time; the Hubble time Template:Mvar is simply defined as the inverse of the Hubble constant,<ref>Template:Cite book</ref> i.e.

<math display="block">t_H \equiv \frac{1}{H_0} = \frac{1}{67.8 \mathrm{~(km/s)/Mpc}} = 4.55\times 10^{17} \mathrm{~s} = 14.4 \text{ billion years}.</math>

This is slightly different from the age of the universe, which is approximately 13.8 billion years. The Hubble time is the age it would have had if the expansion had been linear,<ref>Template:Cite book</ref> and it is different from the real age of the universe because the expansion is not linear; it depends on the energy content of the universe (see Template:Slink).

We currently appear to be approaching a period where the expansion of the universe is exponential due to the increasing dominance of vacuum energy. In this regime, the Hubble parameter is constant, and the universe grows by a factor [[E (mathematical constant)|Template:Mvar]] each Hubble time:

<math display="block">H \equiv \frac{\dot a}{a} = \textrm{constant} \quad \Longrightarrow \quad a \propto e^{Ht} = e^{\frac{t}{t_H}}</math>

Likewise, the generally accepted value of 2.27 Es−1 means that (at the current rate) the universe would grow by a factor of Template:Mvar2.27 in one exasecond.

Over long periods of time, the dynamics are complicated by general relativity, dark energy, inflation, etc., as explained above.

Hubble lengthEdit

The Hubble length or Hubble distance is a unit of distance in cosmology, defined as Template:Math — the speed of light multiplied by the Hubble time. It is equivalent to 4,420 million parsecs or 14.4 billion light years. (The numerical value of the Hubble length in light years is, by definition, equal to that of the Hubble time in years.) Substituting Template:Math into the equation for Hubble's law, Template:Math reveals that the Hubble distance specifies the distance from our location to those galaxies which are Template:Em receding from us at the speed of light.

Hubble volumeEdit

{{#invoke:Labelled list hatnote|labelledList|Main article|Main articles|Main page|Main pages}} The Hubble volume is sometimes defined as a volume of the universe with a comoving size of Template:Math. The exact definition varies: it is sometimes defined as the volume of a sphere with radius Template:Math, or alternatively, a cube of side Template:Math. Some cosmologists even use the term Hubble volume to refer to the volume of the observable universe, although this has a radius approximately three times larger.

Determining the Hubble constantEdit

File:Recent Hubble's Constant Values.png
The value of the Hubble constant in (km/s)/Mpc, including measurement uncertainty, for recent surveys<ref name="planck_overview"/>

The value of the Hubble constant, Template:Math, cannot be measured directly, but is derived from a combination of astronomical observations and model-dependent assumptions. Increasingly accurate observations and new models over many decades have led to two sets of highly precise values which do not agree. This difference is known as the "Hubble tension".<ref name="NYT-20170220" /><ref name=VerdeReview2024/>

Earlier measurementsEdit

For the original 1929 estimate of the constant now bearing his name, Hubble used observations of Cepheid variable stars as "standard candles" to measure distance.<ref name=Allen/> The result he obtained was Template:Val, much larger than the value astronomers currently calculate. Later observations by astronomer Walter Baade led him to realize that there were distinct "populations" for stars (Population I and Population II) in a galaxy. The same observations led him to discover that there are two types of Cepheid variable stars with different luminosities. Using this discovery, he recalculated Hubble constant and the size of the known universe, doubling the previous calculation made by Hubble in 1929.<ref>Baade, W. (1944) The resolution of Messier 32, NGC 205, and the central region of the Andromeda nebula. ApJ 100 137–146</ref><ref>Baade, W. (1956) The period-luminosity relation of the Cepheids. PASP 68 5–16</ref><ref name=Allen>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> He announced this finding to considerable astonishment at the 1952 meeting of the International Astronomical Union in Rome.

For most of the second half of the 20th century, the value of Template:Math was estimated to be between Template:Val.

The value of the Hubble constant was the topic of a long and rather bitter controversy between Gérard de Vaucouleurs, who claimed the value was around 100, and Allan Sandage, who claimed the value was near 50.<ref name="Overbye"/> In one demonstration of vitriol shared between the parties, when Sandage and Gustav Andreas Tammann (Sandage's research colleague) formally acknowledged the shortcomings of confirming the systematic error of their method in 1975, Vaucouleurs responded "It is unfortunate that this sober warning was so soon forgotten and ignored by most astronomers and textbook writers".<ref name=":0">Template:Cite book</ref> In 1996, a debate moderated by John Bahcall between Sidney van den Bergh and Gustav Tammann was held in similar fashion to the earlier Shapley–Curtis debate over these two competing values.

This previously wide variance in estimates was partially resolved with the introduction of the ΛCDM model of the universe in the late 1990s. Incorporating the ΛCDM model, observations of high-redshift clusters at X-ray and microwave wavelengths using the Sunyaev–Zel'dovich effect, measurements of anisotropies in the cosmic microwave background radiation, and optical surveys all gave a value of around 50–70 km/s/Mpc for the constant.<ref name=Myers1999>Template:Cite journal</ref>

Precision cosmology and the Hubble tension Template:AnchorEdit

By the late 1990s, advances in ideas and technology allowed higher precision measurements.<ref name=Turner-2022>Template:Cite journal</ref> However, two major categories of methods, each with high precision, fail to agree. "Late universe" measurements using calibrated distance ladder techniques have converged on a value of approximately Template:Val. Since 2000, "early universe" techniques based on measurements of the cosmic microwave background have become available, and these agree on a value near Template:Val.<ref>Template:Cite journal</ref> (This accounts for the change in the expansion rate since the early universe, so is comparable to the first number.) Initially, this discrepancy was within the estimated measurement uncertainties and thus no cause for concern. However, as techniques have improved, the estimated measurement uncertainties have shrunk, but the discrepancies have not, to the point that the disagreement is now highly statistically significant. This discrepancy is called the Hubble tension.<ref name="LS-20190826">Template:Cite news</ref><ref name="di Valentino 2021 153001">Template:Cite journal</ref>

An example of an "early" measurement, the Planck mission published in 2018 gives a value for Template:Math of Template:Val.<ref name="2018planckcosmos"/> In the "late" camp is the higher value of Template:Val determined by the Hubble Space Telescope<ref name="SA2019">Template:Cite magazine</ref> and confirmed by the James Webb Space Telescope in 2023.<ref>Template:Citation</ref><ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> The "early" and "late" measurements disagree at the >5 σ level, beyond a plausible level of chance.<ref name="Riess2019"/><ref>Template:Cite journal</ref> The resolution to this disagreement is an ongoing area of active research.<ref>Template:Cite journal</ref>

File:Measurements of the Hubble constant (H0) by different astronomical missions and groups until 2021.jpg
The landscape of H0 measurements around 2021, with the 2018 results from CMB measurements highlighted in pink and 2020 distance ladder values highlighted in cyan.<ref name="di Valentino 2021 153001" />

Reducing systematic errorsEdit

Since 2013 much effort has gone in to new measurements to check for possible systematic errors and improved reproducibility.<ref name=VerdeReview2024/>

The "late universe" or distance ladder measurements typically employ three stages or "rungs". In the first rung distances to Cepheids are determined while trying to reduce luminosity errors from dust and correlations of metallicity with luminosity. The second rung uses Type Ia supernova, explosions of almost constant amount of mass and thus very similar amounts of light; the primary source of systematic error is the limited number of objects that can be observed. The third rung of the distance ladder measures the red-shift of supernova to extract the Hubble flow and from that the constant. At this rung corrections due to motion other than expansion are applied.<ref name=VerdeReview2024/>Template:Rp As an example of the kind of work needed to reduce systematic errors, photometry on observations from the James Webb Space Telescope of extra-galactic Cepheids confirm the findings from the HST. The higher resolution avoided confusion from crowding of stars in the field of view but came to the same value for H0.<ref>Template:Cite journal</ref><ref name=VerdeReview2024>Template:Cite journal</ref>

The "early universe" or inverse distance ladder measures the observable consequences of spherical sound waves on primordial plasma density. These pressure waves – called baryon acoustic oscillations (BAO) – cease once the universe cooled enough for electrons to stay bound to nuclei, ending the plasma and allowing the photons trapped by interaction with the plasma to escape. The pressure waves then become very small perturbations in density imprinted on the cosmic microwave background and on the large scale density of galaxies across the sky. Detailed structure in high precision measurements of the CMB can be matched to physics models of the oscillations. These models depend upon the Hubble constant such that a match reveals a value for the constant. Similarly, the BAO affects the statistical distribution of matter, observed as distant galaxies across the sky. These two independent kinds of measurements produce similar values for the constant from the current models, giving strong evidence that systematic errors in the measurements themselves do not affect the result.<ref name=VerdeReview2024/>Template:Rp

Other kinds of measurementsEdit

In addition to measurements based on calibrated distance ladder techniques or measurements of the CMB, other methods have been used to determine the Hubble constant.

One alternative method for constraining the Hubble constant involves transient events seen in multiple images of a strongly lensed object. A transient event, such as a supernova, is seen at different times in each of the lensed images, and if this time delay between each image can be measured, it can be used to constrain the Hubble constant. This method is commonly known as "time-delay cosmography", and was first proposed by Refsdal in 1964,<ref>Template:Cite journal</ref> years before the first strongly lensed object was observed. The first strongly lensed supernova to be discovered was named SN Refsdal in his honor. While Refsdal suggested this could be done with supernovae, he also noted that extremely luminous and distant star-like objects could also be used. These objects were later named quasars, and to date (April 2025) the majority of time-delay cosmography measurements have been done with strongly lensed quasars. This is because current samples of lensed quasars vastly outnumber known lensed supernovae, of which <10 are known. This is expected to change dramatically in the next few years, with surveys such as LSST expected to discover ~10 lensed SNe in the first three years of observation.<ref>Template:Cite arXiv</ref> For example time-delay constraints on H0, see the results from STRIDES and H0LiCOW in the table below.

In October 2018, scientists used information from gravitational wave events (especially those involving the merger of neutron stars, like GW170817), of determining the Hubble constant.<ref name="PHYS-20181022">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref><ref name="NAT-20181017">Template:Cite journal</ref>

In July 2019, astronomers reported that a new method to determine the Hubble constant, and resolve the discrepancy of earlier methods, has been proposed based on the mergers of pairs of neutron stars, following the detection of the neutron star merger of GW170817, an event known as a dark siren.<ref name="EA-20190708">Template:Cite news</ref><ref name="NRAO-20190708">Template:Cite news</ref> Their measurement of the Hubble constant is Template:Val (km/s)/Mpc.<ref name="NAT-20190708">Template:Cite journal</ref>

Also in July 2019, astronomers reported another new method, using data from the Hubble Space Telescope and based on distances to red giant stars calculated using the tip of the red-giant branch (TRGB) distance indicator. Their measurement of the Hubble constant is Template:Val.<ref name="EA-20190716" /><ref name="SCI-20190719" /><ref name="The Carnegie-Chicago Hubble Program">Template:Cite journal</ref>

In February 2020, the Megamaser Cosmology Project published independent results based on astrophysical masers visible at cosmological distances and which do not require multi-step calibration. That work confirmed the distance ladder results and differed from the early-universe results at a statistical significance level of 95%.<ref name="megamaser" />

In July 2020, measurements of the cosmic background radiation by the Atacama Cosmology Telescope predict that the Universe should be expanding more slowly than is currently observed.<ref>Template:Cite journal</ref>

In July 2023, an independent estimate of the Hubble constant was derived from a kilonova, the optical afterglow of a neutron star merger, using the expanding photosphere method.<ref name="aanda.org">Template:Cite journal</ref> Due to the blackbody nature of early kilonova spectra,<ref>Template:Cite journal</ref> such systems provide strongly constraining estimators of cosmic distance. Using the kilonova AT2017gfo (the aftermath of, once again, GW170817), these measurements indicate a local-estimate of the Hubble constant of Template:Val.<ref name="nature.com">Template:Cite journal</ref><ref name="aanda.org"/>

File:Hubbleconstants color.png
Estimated values of the Hubble constant, 2001–2020. Estimates in black represent calibrated distance ladder measurements which tend to cluster around Template:Val; red represents early universe CMB/BAO measurements with ΛCDM parameters which show good agreement on a figure near Template:Val, while blue are other techniques, whose uncertainties are not yet small enough to decide between the two.

Possible resolutions of the Hubble tensionEdit

The cause of the Hubble tension is unknown,<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> and there are many possible proposed solutions. The most conservative is that there is an unknown systematic error affecting either early-universe or late-universe observations. Although intuitively appealing, this explanation requires multiple unrelated effects regardless of whether early-universe or late-universe observations are incorrect, and there are no obvious candidates. Furthermore, any such systematic error would need to affect multiple different instruments, since both the early-universe and late-universe observations come from several different telescopes.<ref name=VerdeReview2024/>

Alternatively, it could be that the observations are correct, but some unaccounted-for effect is causing the discrepancy. If the cosmological principle fails (see Template:Slink), then the existing interpretations of the Hubble constant and the Hubble tension have to be revised, which might resolve the Hubble tension.<ref name="Snowmass21">Template:Citation</ref> In particular, we would need to be located within a very large void, up to about a redshift of 0.5, for such an explanation to conflate with supernovae and baryon acoustic oscillation observations.<ref name="di Valentino 2021 153001" /> Yet another possibility is that the uncertainties in the measurements could have been underestimated, but given the internal agreements this is neither likely, nor resolves the overall tension.<ref name=VerdeReview2024/>

Finally, another possibility is new physics beyond the currently accepted cosmological model of the universe, the ΛCDM model.<ref name="di Valentino 2021 153001"/><ref>Template:Cite journal</ref> There are very many theories in this category, for example, replacing general relativity with a modified theory of gravity could potentially resolve the tension,<ref name="Haslbauer">Template:Cite journal</ref><ref name="Mazurenko">Template:Cite journal</ref> as can a dark energy component in the early universe,Template:Efn<ref>Template:Cite journal</ref> dark energy with a time-varying equation of state,Template:Efn<ref>Template:Cite journal</ref> or dark matter that decays into dark radiation.<ref>Template:Cite journal</ref> A problem faced by all these theories is that both early-universe and late-universe measurements rely on multiple independent lines of physics, and it is difficult to modify any of those lines while preserving their successes elsewhere. The scale of the challenge can be seen from how some authors have argued that new early-universe physics alone is not sufficient;<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref><ref>Template:Cite journal </ref> while other authors argue that new late-universe physics alone is also not sufficient.<ref>Template:Cite journal</ref> Nonetheless, astronomers are trying, with interest in the Hubble tension growing strongly since the mid 2010s.<ref name="di Valentino 2021 153001" />

Measurements of the Hubble constantEdit

Date published Hubble constant
(km/s)/Mpc
Observer Citation Remarks / methodology
2025-01-14 Template:Val Pascale et al. <ref>Template:Cite journal</ref> Timing delay of gravitationally lensed images of Supernova H0pe. Independent of cosmic distance ladder or the CMB. JWST data. (Same method as 2023-05-11 cell.)
2024-12-01 Template:Val SH0ES+CCHP JWST <ref>Template:Cite journal</ref> JWST, 3 methods, Cepheids, TRGB, JAGB, 2 groups data
2023-07-19 Template:Val Sneppen et al. <ref name="nature.com"/><ref name="aanda.org"/> Due to the blackbody spectra of the optical counterpart of neutron-star mergers, these systems provide strongly constraining estimators of cosmic distance.
2023-07-13 Template:Val SPT-3G <ref>Template:Cite journal</ref> CMB TT/TE/EE power spectrum. Less than 1σ discrepancy with Planck.
2023-05-11 Template:Val P. L. Kelly et al. <ref>Template:Cite journal</ref> Timing delay of gravitationally lensed images of Supernova Refsdal. Independent of cosmic distance ladder or the CMB.
2022-12-14 Template:Val S. Contarini et al. <ref>Template:Cite journal</ref> Statistics of cosmic voids using BOSS DR12 data set.<ref>{{#invoke:citation/CS1|citation CitationClass=web

}}</ref>

2022-02-08 Template:Val Pantheon+ <ref>Template:Cite journal</ref> SN Ia distance ladder (+SH0ES)
2022-06-17 Template:Val T. de Jaeger et al. <ref name="deJaeger2022">Template:Cite journal</ref> Use Type II supernovae as standardisable candles to obtain an independent measurement of the Hubble constant—13 SNe II with host-galaxy distances measured from Cepheid variables, the tip of the red giant branch, and geometric distance (NGC 4258).
2021-12-08 Template:Val SH0ES <ref>Template:Cite journal</ref> Cepheids-SN Ia distance ladder (HST+Gaia EDR3+"Pantheon+"). 5σ discrepancy with planck.
2021-09-17 Template:Val W. Freedman <ref>Template:Cite journal</ref> Tip of the red-giant branch (TRGB) distance indicator (HST+Gaia EDR3)
2020-12-16 Template:Val Hubble Space Telescope and Gaia EDR3 <ref name="Soltis2020">Template:Cite journal</ref> Combining earlier work on red giant stars, using the tip of the red-giant branch (TRGB) distance indicator, with parallax measurements of Omega Centauri from Gaia EDR3.
2020-12-15 Template:Val Hubble Space Telescope and Gaia EDR3 <ref name="Riess2020">Template:Cite journal</ref> Combination of HST photometry and Gaia EDR3 parallaxes for Milky Way Cepheids, reducing the uncertainty in calibration of Cepheid luminosities to 1.0%. Overall uncertainty in the value for Template:Math is 1.8%, which is expected to be reduced to 1.3% with a larger sample of type Ia supernovae in galaxies that are known Cepheid hosts. Continuation of a collaboration known as Supernovae, Template:Math, for the Equation of State of Dark Energy (SHoES).
2020-12-04 Template:Val E. J. Baxter, B. D. Sherwin <ref name="Baxter2020">Template:Cite journal</ref> Gravitational lensing in the CMB is used to estimate Template:Math without referring to the sound horizon scale, providing an alternative method to analyze the Planck data.
2020-11-25 Template:Val P. Denzel et al. <ref name="Denzel2020">Template:Cite journal</ref> Eight quadruply lensed galaxy systems are used to determine Template:Math to a precision of 5%, in agreement with both "early" and "late" universe estimates. Independent of distance ladders and the cosmic microwave background.
2020-11-07 Template:Val T. Sedgwick et al. <ref>Template:Cite journal</ref> Derived from 88 0.02 < Template:Mvar < 0.05 Type Ia supernovae used as standard candle distance indicators. The Template:Math estimate is corrected for the effects of peculiar velocities in the supernova environments, as estimated from the galaxy density field. The result assumes Template:Math, Template:Math and a sound horizon of Template:Val, a value taken from Anderson et al. (2014).<ref>Template:Cite journal</ref>
2020-09-29 Template:Val S. Mukherjee et al. <ref name="Mukherjee2020">Template:Cite arXiv</ref> Gravitational waves, assuming that the transient ZTF19abanrh found by the Zwicky Transient Facility is the optical counterpart to GW190521. Independent of distance ladders and the cosmic microwave background.
2020-06-18 Template:Val T. de Jaeger et al. <ref name="deJaeger2020">Template:Cite journal</ref> Use Type II supernovae as standardisable candles to obtain an independent measurement of the Hubble constant—7 SNe II with host-galaxy distances measured from Cepheid variables or the tip of the red giant branch.
2020-02-26 Template:Val Megamaser Cosmology Project <ref name="megamaser">Template:Cite journal</ref> Geometric distance measurements to megamaser-hosting galaxies. Independent of distance ladders and the cosmic microwave background.
2019-10-14 Template:Val STRIDES <ref>Template:Cite journal</ref> Modelling the mass distribution & time delay of the lensed quasar DES J0408-5354.
2019-09-12 Template:Val SHARP/H0LiCOW <ref>Template:Cite journal</ref> Modelling three galactically lensed objects and their lenses using ground-based adaptive optics and the Hubble Space Telescope.
2019-08-20 Template:Val K. Dutta et al. <ref>Template:Cite journal</ref> This <math>H_0</math> is obtained analysing low-redshift cosmological data within ΛCDM model. The datasets used are type-Ia supernovae, baryon acoustic oscillations, time-delay measurements using strong-lensing, Template:Math measurements using cosmic chronometers and growth measurements from large scale structure observations.
2019-08-15 Template:Val M. J. Reid, D. W. Pesce, A. G. Riess <ref>Template:Cite journal</ref> Measuring the distance to Messier 106 using its supermassive black hole, combined with measurements of eclipsing binaries in the Large Magellanic Cloud.
2019-07-16 Template:Val Hubble Space Telescope <ref name="EA-20190716">Template:Cite news</ref><ref name="SCI-20190719">Template:Cite journal</ref><ref name="The Carnegie-Chicago Hubble Program"/> Distances to red giant stars are calculated using the tip of the red-giant branch (TRGB) distance indicator.
2019-07-10 Template:Val H0LiCOW collaboration <ref name="H0LiCOW2019">Template:Cite journal</ref> Updated observations of multiply imaged quasars, now using six quasars, independent of the cosmic distance ladder and independent of the cosmic microwave background measurements.
2019-07-08 Template:Val The LIGO Scientific Collaboration and The Virgo Collaboration <ref name="NAT-20190708" /> Uses radio counterpart of GW170817, combined with earlier gravitational wave (GW) and electromagnetic (EM) data.
2019-03-28 Template:Val Fermi-LAT <ref>Template:Cite journal</ref> Gamma ray attenuation due to extragalactic light. Independent of the cosmic distance ladder and the cosmic microwave background.
2019-03-18 Template:Val Hubble Space Telescope <ref name="Riess2019">Template:Cite journal</ref> Precision HST photometry of Cepheids in the Large Magellanic Cloud (LMC) reduce the uncertainty in the distance to the LMC from 2.5% to 1.3%. The revision increases the tension with CMB measurements to the 4.4σ level (P=99.999% for Gaussian errors), raising the discrepancy beyond a plausible level of chance. Continuation of a collaboration known as Supernovae, Template:Math, for the Equation of State of Dark Energy (SHoES).
2019-02-08 Template:Val Joseph Ryan et al. <ref name="Ryan2019">Template:Cite journal</ref> Quasar angular size and baryon acoustic oscillations, assuming a flat ΛCDM model. Alternative models result in different (generally lower) values for the Hubble constant.
2018-11-06 Template:Val Dark Energy Survey <ref name="DES">Template:Cite journal</ref> Supernova measurements using the inverse distance ladder method based on baryon acoustic oscillations.
2018-09-05 Template:Val H0LiCOW collaboration <ref name="H0LiCOW">Template:Cite journal</ref> Observations of multiply imaged quasars, independent of the cosmic distance ladder and independent of the cosmic microwave background measurements.
2018-07-18 Template:Val Planck Mission <ref name="2018planckcosmos">Template:Cite journal</ref> Final Planck 2018 results.
2018-04-27 Template:Val Hubble Space Telescope and Gaia <ref name="gaiariess2018">Template:Cite journal</ref><ref name="guardianhubbleconstant">Template:Cite news</ref> Additional HST photometry of galactic Cepheids with early Gaia parallax measurements. The revised value increases tension with CMB measurements at the 3.8σ level. Continuation of the SHoES collaboration.
2018-02-22 Template:Val Hubble Space Telescope <ref>Template:Cite journal</ref><ref name="NASA-20180222">{{#invoke:citation/CS1|citation CitationClass=web

}}</ref>

Parallax measurements of galactic Cepheids for enhanced calibration of the distance ladder; the value suggests a discrepancy with CMB measurements at the 3.7σ level. The uncertainty is expected to be reduced to below 1% with the final release of the Gaia catalog. SHoES collaboration.
2017-10-16 Template:Val The LIGO Scientific Collaboration and The Virgo Collaboration <ref>Template:Cite journal</ref> Standard siren measurement independent of normal "standard candle" techniques; the gravitational wave analysis of a binary neutron star (BNS) merger GW170817 directly estimated the luminosity distance out to cosmological scales. An estimate of fifty similar detections in the next decade may arbitrate tension of other methodologies.<ref>Template:Cite journal</ref> Detection and analysis of a neutron star-black hole merger (NSBH) may provide greater precision than BNS could allow.<ref name="VitaleChen2018">Template:Cite journal</ref>
2016-11-22 Template:Val Hubble Space Telescope <ref>Template:Cite journal</ref> Uses time delays between multiple images of distant variable sources produced by strong gravitational lensing. Collaboration known as Template:Math Lenses in COSMOGRAIL's Wellspring (H0LiCOW).
2016-08-04 Template:Val Cosmicflows-3 <ref name="Cosmicflows-3">Template:Cite journal</ref> Comparing redshift to other distance methods, including Tully–Fisher, Cepheid variable, and Type Ia supernovae. A restrictive estimate from the data implies a more precise value of Template:Val.
2016-07-13 Template:Val SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) <ref>Template:Cite journal</ref> citation CitationClass=web

}}</ref>

2016-05-17 Template:Val Hubble Space Telescope <ref>Template:Cite journal</ref> Type Ia supernova, the uncertainty is expected to go down by a factor of more than two with upcoming Gaia measurements and other improvements. SHoES collaboration.
2015-02 Template:Val Planck Mission citation CitationClass=web

}}</ref><ref name="nature20141202">Template:Cite news</ref>

Results from an analysis of PlanckTemplate:'s full mission were made public on 1 December 2014 at a conference in Ferrara, Italy. A full set of papers detailing the mission results were released in February 2015.
2013-10-01 Template:Val Cosmicflows-2 <ref name="cosmicflows2">Template:Cite journal</ref> Comparing redshift to other distance methods, including Tully–Fisher, Cepheid variable, and Type Ia supernovae.
2013-03-21 Template:Val Planck Mission <ref name="planck_overview">Template:Cite journal</ref><ref name="ESA-20130321">{{#invoke:citation/CS1|citation CitationClass=web

}}</ref><ref name="NASA-20130321">{{#invoke:citation/CS1|citation

CitationClass=web

}}</ref><ref name="NYT-20130321">Template:Cite news</ref><ref name="NBC-20130321">{{#invoke:citation/CS1|citation

CitationClass=web

}}</ref>

The ESA Planck Surveyor was launched in May 2009. Over a four-year period, it performed a significantly more detailed investigation of cosmic microwave radiation than earlier investigations using HEMT radiometers and bolometer technology to measure the CMB at a smaller scale than WMAP. On 21 March 2013, the European-led research team behind the Planck cosmology probe released the mission's data including a new CMB all-sky map and their determination of the Hubble constant.
2012-12-20 Template:Val WMAP (9 years), combined with other measurements <ref>Template:Cite journal</ref>
2010 Template:Val WMAP (7 years), combined with other measurements <ref name="wmap7parameters">Template:Cite journal</ref> These values arise from fitting a combination of WMAP and other cosmological data to the simplest version of the ΛCDM model. If the data are fit with more general versions, Template:Math tends to be smaller and more uncertain: typically around Template:Val although some models allow values near Template:Val.<ref>Results for Template:Math and other cosmological parameters obtained by fitting a variety of models to several combinations of WMAP and other data are available at the NASA's LAMBDA website Template:Webarchive.</ref>
2010 Template:Val WMAP only (7 years). <ref name="wmap7parameters"/>
2009-02 Template:Val WMAP (5 years), combined with other measurements <ref name="WMAP2009">Template:Cite journal</ref>
2009-02 Template:Val WMAP only (5 years) <ref name="WMAP2009"/>
2007 Template:Val WMAP (3 years), combined with other measurements <ref>Template:Cite journal</ref>
2006-08 Template:Val Chandra X-ray Observatory <ref>Template:Cite journal</ref> Combined Sunyaev–Zeldovich effect and Chandra X-ray observations of galaxy clusters. Adjusted uncertainty in table from Planck Collaboration 2013.<ref name="planck2013_parameters">Template:Cite journal</ref>
2003 Template:Val WMAP (First year) only <ref>Template:Cite journal</ref>
2001-05 Template:Val Hubble Space Telescope Key Project <ref name="Freedman2001">Template:Cite journal</ref> This project established the most precise optical determination, consistent with a measurement of Template:Math based upon Sunyaev–Zel'dovich effect observations of many galaxy clusters having a similar accuracy.
before 1996 Template:ValTemplate:Val (est.) <ref name="Overbye">Template:Cite book</ref>
1994 Template:Val Supernova 1a Light Curve Shapes <ref>Template:Cite journal</ref> Determined relationship between luminosity of SN 1a's and their Light Curve Shapes. Riess et al. used this ratio of the light curve of SN 1972E and the Cepheid distance to NGC 5253 to determine the constant.
mid 1970's Template:Val Gérard de Vaucouleurs <ref name=":0" /> De Vaucouleurs believed he had improved the accuracy of Hubble's constant from Sandage's because he used 5x more primary indicators, 10× more calibration methods, 2× more secondary indicators, and 3× as many galaxy data points to derive his Template:Val.
early 1970s Template:Val (est.) Allan Sandage and Gustav Tammann <ref name="cfa"/>
1958 Template:Val (est.) Allan Sandage <ref>Template:Cite journal</ref> This was the first good estimate of Template:Math, but it would be decades before a consensus was achieved.
1956 Template:Val Humason, Mayall and Sandage citation CitationClass=web

}}</ref>

1929 Template:Val Edwin Hubble, Hooker telescope citation CitationClass=web

}}</ref>

1927 Template:Val Georges Lemaître <ref>Template:Cite journal</ref> First measurement and interpretation as a sign of the expansion of the universe.

See alsoEdit

NotesEdit

Template:Notelist

ReferencesEdit

Template:Reflist

BibliographyEdit

External linksEdit

|CitationClass=web }}

Template:Portal bar