Template:Short description Template:Redirect Template:Anchor

In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points Template:Math form a circle with a unit radius, the points Template:Math form the right half of the unit hyperbola. Also, similarly to how the derivatives of Template:Math and Template:Math are Template:Math and Template:Math respectively, the derivatives of Template:Math and Template:Math are Template:Math and Template:Math respectively.

Hyperbolic functions are used to express the angle of parallelism in hyperbolic geometry. They are used to express Lorentz boosts as hyperbolic rotations in special relativity. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary), cubic equations, and Laplace's equation in Cartesian coordinates. Laplace's equations are important in many areas of physics, including electromagnetic theory, heat transfer, and fluid dynamics.

The basic hyperbolic functions are:<ref name=":1">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

from which are derived:<ref name=":2">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

corresponding to the derived trigonometric functions.

The inverse hyperbolic functions are:

File:Hyperbolic functions-2.svg
A ray through the unit hyperbola Template:Math at the point Template:Math, where Template:Mvar is twice the area between the ray, the hyperbola, and the Template:Mvar-axis. For points on the hyperbola below the Template:Mvar-axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).

The hyperbolic functions take a real argument called a hyperbolic angle. The magnitude of a hyperbolic angle is the area of its hyperbolic sector to xy = 1. The hyperbolic functions may be defined in terms of the legs of a right triangle covering this sector.

In complex analysis, the hyperbolic functions arise when applying the ordinary sine and cosine functions to an imaginary angle. The hyperbolic sine and the hyperbolic cosine are entire functions. As a result, the other hyperbolic functions are meromorphic in the whole complex plane.

By Lindemann–Weierstrass theorem, the hyperbolic functions have a transcendental value for every non-zero algebraic value of the argument.<ref>Template:Cite book</ref>

HistoryEdit

The first known calculation of a hyperbolic trigonometry problem is attributed to Gerardus Mercator when issuing the Mercator map projection circa 1566. It requires tabulating solutions to a transcendental equation involving hyperbolic functions.<ref name=":3">Template:Cite book</ref>

The first to suggest a similarity between the sector of the circle and that of the hyperbola was Isaac Newton in his 1687 Principia Mathematica.<ref name=":0">Template:Cite book</ref>

Roger Cotes suggested to modify the trigonometric functions using the imaginary unit <math>i=\sqrt{-1} </math> to obtain an oblate spheroid from a prolate one.<ref name=":0" />

Hyperbolic functions were formally introduced in 1757 by Vincenzo Riccati.<ref name=":0" /><ref name=":3" /><ref name=":4" /> Riccati used Template:Math and Template:Math ({{#invoke:Lang|lang}}) to refer to circular functions and Template:Math and Template:Math ({{#invoke:Lang|lang}}) to refer to hyperbolic functions.<ref name=":0" /> As early as 1759, Daviet de Foncenex showed the interchangeability of the trigonometric and hyperbolic functions using the imaginary unit and extended de Moivre's formula to hyperbolic functions.<ref name=":4" /><ref name=":0" />

During the 1760s, Johann Heinrich Lambert systematized the use functions and provided exponential expressions in various publications.<ref name=":0" /><ref name=":4">Bradley, Robert E.; D'Antonio, Lawrence A.; Sandifer, Charles Edward. Euler at 300: an appreciation. Mathematical Association of America, 2007. Page 100.</ref> Lambert credited Riccati for the terminology and names of the functions, but altered the abbreviations to those used today.<ref name=":4" /><ref>Becker, Georg F. Hyperbolic functions. Read Books, 1931. Page xlviii.</ref>

NotationEdit

{{#invoke:Labelled list hatnote|labelledList|Main article|Main articles|Main page|Main pages}}

DefinitionsEdit

File:Sinh cosh tanh.svg
sinh, cosh and tanh
File:Csch sech coth.svg
csch, sech and coth

There are various equivalent ways to define the hyperbolic functions.

Exponential definitionsEdit

In terms of the exponential function:<ref name=":1" /><ref name=":2" />

  • Hyperbolic sine: the odd part of the exponential function, that is, <math display="block"> \sinh x = \frac {e^x - e^{-x}} {2} = \frac {e^{2x} - 1} {2e^x} = \frac {1 - e^{-2x}} {2e^{-x}}.</math>
  • Hyperbolic cosine: the even part of the exponential function, that is, <math display="block"> \cosh x = \frac {e^x + e^{-x}} {2} = \frac {e^{2x} + 1} {2e^x} = \frac {1 + e^{-2x}} {2e^{-x}}.</math>
  • Hyperbolic tangent: <math display="block">\tanh x = \frac{\sinh x}{\cosh x} = \frac {e^x - e^{-x}} {e^x + e^{-x}}

= \frac{e^{2x} - 1} {e^{2x} + 1}.</math>

  • Hyperbolic cotangent: for Template:Math, <math display="block">\coth x = \frac{\cosh x}{\sinh x} = \frac {e^x + e^{-x}} {e^x - e^{-x}}

= \frac{e^{2x} + 1} {e^{2x} - 1}.</math>

  • Hyperbolic secant: <math display="block"> \operatorname{sech} x = \frac{1}{\cosh x} = \frac {2} {e^x + e^{-x}}

= \frac{2e^x} {e^{2x} + 1}.</math>

  • Hyperbolic cosecant: for Template:Math, <math display="block"> \operatorname{csch} x = \frac{1}{\sinh x} = \frac {2} {e^x - e^{-x}}

= \frac{2e^x} {e^{2x} - 1}.</math>

Differential equation definitionsEdit

The hyperbolic functions may be defined as solutions of differential equations: The hyperbolic sine and cosine are the solution Template:Math of the system <math display="block">\begin{align} c'(x)&=s(x),\\ s'(x)&=c(x),\\ \end{align} </math> with the initial conditions <math>s(0) = 0, c(0) = 1.</math> The initial conditions make the solution unique; without them any pair of functions <math>(a e^x + b e^{-x}, a e^x - b e^{-x})</math> would be a solution.

Template:Math and Template:Math are also the unique solution of the equation Template:Math, such that Template:Math, Template:Math for the hyperbolic cosine, and Template:Math, Template:Math for the hyperbolic sine.

Complex trigonometric definitionsEdit

Hyperbolic functions may also be deduced from trigonometric functions with complex arguments:

  • Hyperbolic sine:<ref name=":1" /> <math display="block">\sinh x = -i \sin (i x).</math>
  • Hyperbolic cosine:<ref name=":1" /> <math display="block">\cosh x = \cos (i x).</math>
  • Hyperbolic tangent: <math display="block">\tanh x = -i \tan (i x).</math>
  • Hyperbolic cotangent: <math display="block">\coth x = i \cot (i x).</math>
  • Hyperbolic secant: <math display="block"> \operatorname{sech} x = \sec (i x).</math>
  • Hyperbolic cosecant:<math display="block">\operatorname{csch} x = i \csc (i x).</math>

where Template:Mvar is the imaginary unit with Template:Math.

The above definitions are related to the exponential definitions via Euler's formula (See Template:Section link below).

Characterizing propertiesEdit

Hyperbolic cosineEdit

It can be shown that the area under the curve of the hyperbolic cosine (over a finite interval) is always equal to the arc length corresponding to that interval:<ref>Template:Cite book</ref> <math display="block">\text{area} = \int_a^b \cosh x \,dx = \int_a^b \sqrt{1 + \left(\frac{d}{dx} \cosh x \right)^2} \,dx = \text{arc length.}</math>

Hyperbolic tangentTemplate:AnchorEdit

The hyperbolic tangent is the (unique) solution to the differential equation Template:Math, with Template:Math.<ref>Template:Cite book Extract of page 281 (using lambda=1)</ref><ref>Template:Cite book Extract of page 290</ref>

Useful relationsEdit

Template:Anchor The hyperbolic functions satisfy many identities, all of them similar in form to the trigonometric identities. In fact, Osborn's rule<ref name="Osborn, 1902" /> states that one can convert any trigonometric identity (up to but not including sinhs or implied sinhs of 4th degree) for <math>\theta</math>, <math>2\theta</math>, <math>3\theta</math> or <math>\theta</math> and <math>\varphi</math> into a hyperbolic identity, by:

  1. expanding it completely in terms of integral powers of sines and cosines,
  2. changing sine to sinh and cosine to cosh, and
  3. switching the sign of every term containing a product of two sinhs.

Odd and even functions: <math display="block">\begin{align}

\sinh (-x) &= -\sinh x \\
\cosh (-x) &=  \cosh x

\end{align}</math>

Hence: <math display="block">\begin{align}

              \tanh (-x) &= -\tanh x \\
              \coth (-x) &= -\coth x \\
\operatorname{sech} (-x) &=  \operatorname{sech} x \\
\operatorname{csch} (-x) &= -\operatorname{csch} x

\end{align}</math>

Thus, Template:Math and Template:Math are even functions; the others are odd functions.

<math display="block">\begin{align}

\operatorname{arsech} x &= \operatorname{arcosh} \left(\frac{1}{x}\right) \\
\operatorname{arcsch} x &= \operatorname{arsinh} \left(\frac{1}{x}\right) \\
\operatorname{arcoth} x &= \operatorname{artanh} \left(\frac{1}{x}\right)

\end{align}</math>

Hyperbolic sine and cosine satisfy: <math display="block">\begin{align}

\cosh x + \sinh x &= e^x \\
\cosh x - \sinh x &= e^{-x} 

\end{align}</math>

which are analogous to Euler's formula, and

<math display="block">

\cosh^2 x - \sinh^2 x = 1

</math>

which is analogous to the Pythagorean trigonometric identity.

One also has <math display="block">\begin{align}

\operatorname{sech} ^{2} x &= 1 - \tanh^{2} x \\
\operatorname{csch} ^{2} x &= \coth^{2} x - 1

\end{align}</math>

for the other functions.

Sums of argumentsEdit

<math display="block">\begin{align}

\sinh(x + y) &= \sinh x \cosh y + \cosh x \sinh y \\
\cosh(x + y) &= \cosh x \cosh y + \sinh x \sinh y \\ 
\tanh(x + y) &= \frac{\tanh x +\tanh y}{1+ \tanh x \tanh y } \\

\end{align}</math> particularly <math display="block">\begin{align} \cosh (2x) &= \sinh^2{x} + \cosh^2{x} = 2\sinh^2 x + 1 = 2\cosh^2 x - 1 \\ \sinh (2x) &= 2\sinh x \cosh x \\ \tanh (2x) &= \frac{2\tanh x}{1+ \tanh^2 x } \\ \end{align}</math>

Also: <math display="block">\begin{align}

\sinh x + \sinh y &= 2 \sinh \left(\frac{x+y}{2}\right) \cosh \left(\frac{x-y}{2}\right)\\
\cosh x + \cosh y &= 2 \cosh \left(\frac{x+y}{2}\right) \cosh \left(\frac{x-y}{2}\right)\\

\end{align}</math>

Subtraction formulasEdit

<math display="block">\begin{align}

\sinh(x - y) &= \sinh x \cosh y - \cosh x \sinh y \\
\cosh(x - y) &= \cosh x \cosh y - \sinh x \sinh y \\
\tanh(x - y) &= \frac{\tanh x -\tanh y}{1- \tanh x \tanh y } \\

\end{align}</math>

Also:<ref>Template:Cite book</ref> <math display="block">\begin{align}

\sinh x - \sinh y &= 2 \cosh \left(\frac{x+y}{2}\right) \sinh \left(\frac{x-y}{2}\right)\\
\cosh x - \cosh y &= 2 \sinh \left(\frac{x+y}{2}\right) \sinh \left(\frac{x-y}{2}\right)\\

\end{align}</math>

Half argument formulasEdit

<math display="block">\begin{align}

\sinh\left(\frac{x}{2}\right) &= \frac{\sinh x}{\sqrt{2 (\cosh x + 1)} } &&= \sgn x \, \sqrt \frac{\cosh x - 1}{2} \\[6px]
\cosh\left(\frac{x}{2}\right) &= \sqrt \frac{\cosh x + 1}{2}\\[6px]
\tanh\left(\frac{x}{2}\right) &= \frac{\sinh x}{\cosh x + 1} &&= \sgn x \, \sqrt \frac{\cosh x-1}{\cosh x+1} = \frac{e^x - 1}{e^x + 1}

\end{align}</math>

where Template:Math is the sign function.

If Template:Math, then<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

<math display="block"> \tanh\left(\frac{x}{2}\right) = \frac{\cosh x - 1}{\sinh x} = \coth x - \operatorname{csch} x </math>

Square formulasEdit

<math display="block">\begin{align} \sinh^2 x &= \tfrac{1}{2}(\cosh 2x - 1) \\ \cosh^2 x &= \tfrac{1}{2}(\cosh 2x + 1) \end{align}</math>

InequalitiesEdit

The following inequality is useful in statistics:<ref>Template:Cite news [1]</ref> <math display="block">\operatorname{cosh}(t) \leq e^{t^2 /2}.</math>

It can be proved by comparing the Taylor series of the two functions term by term.

Inverse functions as logarithmsEdit

{{#invoke:Labelled list hatnote|labelledList|Main article|Main articles|Main page|Main pages}}

<math display="block">\begin{align}

\operatorname {arsinh} (x) &= \ln \left(x + \sqrt{x^{2} + 1} \right) \\
\operatorname {arcosh} (x) &= \ln \left(x + \sqrt{x^{2} - 1} \right) && x \geq 1 \\
\operatorname {artanh} (x) &= \frac{1}{2}\ln \left( \frac{1 + x}{1 - x} \right) && | x | < 1 \\
\operatorname {arcoth} (x) &= \frac{1}{2}\ln \left( \frac{x + 1}{x - 1} \right) && |x| > 1 \\
\operatorname {arsech} (x) &= \ln \left( \frac{1}{x} + \sqrt{\frac{1}{x^2} - 1}\right) = \ln \left( \frac{1+ \sqrt{1 - x^2}}{x} \right) && 0 < x \leq 1 \\
\operatorname {arcsch} (x) &= \ln \left( \frac{1}{x} + \sqrt{\frac{1}{x^2} +1}\right) && x \ne 0

\end{align}</math>

DerivativesEdit

<math display="block">\begin{align}

\frac{d}{dx}\sinh x &= \cosh x \\
\frac{d}{dx}\cosh x &= \sinh x \\
\frac{d}{dx}\tanh x &= 1 - \tanh^2 x = \operatorname{sech}^2 x = \frac{1}{\cosh^2 x} \\
\frac{d}{dx}\coth x &= 1 - \coth^2 x = -\operatorname{csch}^2 x = -\frac{1}{\sinh^2 x} && x \neq 0 \\
\frac{d}{dx}\operatorname{sech} x &= - \tanh x \operatorname{sech} x \\
\frac{d}{dx}\operatorname{csch} x &= - \coth x \operatorname{csch} x && x \neq 0

\end{align}</math> <math display="block">\begin{align}

\frac{d}{dx}\operatorname{arsinh} x &= \frac{1}{\sqrt{x^2+1}} \\
\frac{d}{dx}\operatorname{arcosh} x &= \frac{1}{\sqrt{x^2 - 1}} && 1 < x \\
\frac{d}{dx}\operatorname{artanh} x &= \frac{1}{1-x^2} && |x| < 1 \\
\frac{d}{dx}\operatorname{arcoth} x &= \frac{1}{1-x^2} && 1 < |x| \\
\frac{d}{dx}\operatorname{arsech} x &= -\frac{1}{x\sqrt{1-x^2}} && 0 < x < 1 \\
\frac{d}{dx}\operatorname{arcsch} x &= -\frac{1}{|x|\sqrt{1+x^2}} && x \neq 0
\end{align}</math>

Second derivativesEdit

Each of the functions Template:Math and Template:Math is equal to its second derivative, that is: <math display="block"> \frac{d^2}{dx^2}\sinh x = \sinh x </math> <math display="block"> \frac{d^2}{dx^2}\cosh x = \cosh x \, .</math>

All functions with this property are linear combinations of Template:Math and Template:Math, in particular the exponential functions <math> e^x </math> and <math> e^{-x} </math>.<ref>Template:Dlmf</ref>

Standard integralsEdit

Template:For

<math display="block">\begin{align}

\int \sinh (ax)\,dx &= a^{-1} \cosh (ax) + C \\
\int \cosh (ax)\,dx &= a^{-1} \sinh (ax) + C \\
\int \tanh (ax)\,dx &= a^{-1} \ln (\cosh (ax)) + C \\
\int \coth (ax)\,dx &= a^{-1} \ln \left|\sinh (ax)\right| + C \\
\int \operatorname{sech} (ax)\,dx &= a^{-1} \arctan (\sinh (ax)) + C \\
\int \operatorname{csch} (ax)\,dx &= a^{-1} \ln \left| \tanh \left( \frac{ax}{2} \right) \right| + C = a^{-1} \ln\left|\coth \left(ax\right) - \operatorname{csch} \left(ax\right)\right| + C = -a^{-1}\operatorname{arcoth} \left(\cosh\left(ax\right)\right) +C

\end{align}</math>

The following integrals can be proved using hyperbolic substitution: <math display="block">\begin{align}

\int {\frac{1}{\sqrt{a^2 + u^2}}\,du} & = \operatorname{arsinh} \left( \frac{u}{a} \right) + C \\
\int {\frac{1}{\sqrt{u^2 - a^2}}\,du} &= \sgn{u} \operatorname{arcosh} \left| \frac{u}{a} \right| + C \\
\int {\frac{1}{a^2 - u^2}}\,du & = a^{-1}\operatorname{artanh} \left( \frac{u}{a} \right) + C && u^2 < a^2 \\
\int {\frac{1}{a^2 - u^2}}\,du & = a^{-1}\operatorname{arcoth} \left( \frac{u}{a} \right) + C && u^2 > a^2 \\
\int {\frac{1}{u\sqrt{a^2 - u^2}}\,du} & = -a^{-1}\operatorname{arsech}\left| \frac{u}{a} \right| + C \\
\int {\frac{1}{u\sqrt{a^2 + u^2}}\,du} & = -a^{-1}\operatorname{arcsch}\left| \frac{u}{a} \right| + C

\end{align}</math>

where C is the constant of integration.

Taylor series expressionsEdit

It is possible to express explicitly the Taylor series at zero (or the Laurent series, if the function is not defined at zero) of the above functions.

<math display="block">\sinh x = x + \frac {x^3} {3!} + \frac {x^5} {5!} + \frac {x^7} {7!} + \cdots = \sum_{n=0}^\infty \frac{x^{2n+1}}{(2n+1)!}</math> This series is convergent for every complex value of Template:Mvar. Since the function Template:Math is odd, only odd exponents for Template:Math occur in its Taylor series.

<math display="block">\cosh x = 1 + \frac {x^2} {2!} + \frac {x^4} {4!} + \frac {x^6} {6!} + \cdots = \sum_{n=0}^\infty \frac{x^{2n}}{(2n)!}</math> This series is convergent for every complex value of Template:Mvar. Since the function Template:Math is even, only even exponents for Template:Mvar occur in its Taylor series.

The sum of the sinh and cosh series is the infinite series expression of the exponential function.

The following series are followed by a description of a subset of their domain of convergence, where the series is convergent and its sum equals the function. <math display="block">\begin{align}

              \tanh x &= x - \frac {x^3} {3} + \frac {2x^5} {15} - \frac {17x^7} {315} + \cdots = \sum_{n=1}^\infty \frac{2^{2n}(2^{2n}-1)B_{2n} x^{2n-1}}{(2n)!}, \qquad \left |x \right | < \frac {\pi} {2} \\
              \coth x &= x^{-1} + \frac {x} {3} - \frac {x^3} {45} + \frac {2x^5} {945} + \cdots = \sum_{n=0}^\infty \frac{2^{2n} B_{2n} x^{2n-1}} {(2n)!}, \qquad 0 < \left |x \right | < \pi \\
\operatorname{sech} x &= 1 - \frac {x^2} {2} + \frac {5x^4} {24} - \frac {61x^6} {720} + \cdots = \sum_{n=0}^\infty \frac{E_{2 n} x^{2n}}{(2n)!} , \qquad \left |x \right | < \frac {\pi} {2} \\
\operatorname{csch} x &= x^{-1} - \frac {x} {6} +\frac {7x^3} {360} -\frac {31x^5} {15120} + \cdots = \sum_{n=0}^\infty \frac{ 2 (1-2^{2n-1}) B_{2n} x^{2n-1}}{(2n)!} , \qquad 0 < \left |x \right | < \pi

\end{align}</math>

where:

Infinite products and continued fractionsEdit

The following expansions are valid in the whole complex plane:

<math>\sinh x = x\prod_{n=1}^\infty\left(1+\frac{x^2}{n^2\pi^2}\right) =

\cfrac{x}{1 - \cfrac{x^2}{2\cdot3+x^2 - \cfrac{2\cdot3 x^2}{4\cdot5+x^2 - \cfrac{4\cdot5 x^2}{6\cdot7+x^2 - \ddots}}}} </math>

<math>\cosh x = \prod_{n=1}^\infty\left(1+\frac{x^2}{(n-1/2)^2\pi^2}\right) = \cfrac{1}{1 - \cfrac{x^2}{1 \cdot 2 + x^2 - \cfrac{1 \cdot 2x^2}{3 \cdot 4 + x^2 - \cfrac{3 \cdot 4x^2}{5 \cdot 6 + x^2 - \ddots}}}}</math>
<math>\tanh x = \cfrac{1}{\cfrac{1}{x} + \cfrac{1}{\cfrac{3}{x} + \cfrac{1}{\cfrac{5}{x} + \cfrac{1}{\cfrac{7}{x} + \ddots}}}}</math>

Comparison with circular functionsEdit

File:Circular and hyperbolic angle.svg
Circle and hyperbola tangent at (1,1) display geometry of circular functions in terms of circular sector area Template:Mvar and hyperbolic functions depending on hyperbolic sector area Template:Mvar.

The hyperbolic functions represent an expansion of trigonometry beyond the circular functions. Both types depend on an argument, either circular angle or hyperbolic angle.

Since the area of a circular sector with radius Template:Mvar and angle Template:Mvar (in radians) is Template:Math, it will be equal to Template:Mvar when Template:Math. In the diagram, such a circle is tangent to the hyperbola xy = 1 at (1,1). The yellow sector depicts an area and angle magnitude. Similarly, the yellow and red regions together depict a hyperbolic sector with area corresponding to hyperbolic angle magnitude.

The legs of the two right triangles with hypotenuse on the ray defining the angles are of length Template:Radic times the circular and hyperbolic functions.

The hyperbolic angle is an invariant measure with respect to the squeeze mapping, just as the circular angle is invariant under rotation.<ref>Haskell, Mellen W., "On the introduction of the notion of hyperbolic functions", Bulletin of the American Mathematical Society 1:6:155–9, full text</ref>

The Gudermannian function gives a direct relationship between the circular functions and the hyperbolic functions that does not involve complex numbers.

The graph of the function Template:Math is the catenary, the curve formed by a uniform flexible chain, hanging freely between two fixed points under uniform gravity.

Relationship to the exponential functionEdit

The decomposition of the exponential function in its even and odd parts gives the identities <math display="block">e^x = \cosh x + \sinh x,</math> and <math display="block">e^{-x} = \cosh x - \sinh x.</math> Combined with Euler's formula <math display="block">e^{ix} = \cos x + i\sin x,</math> this gives <math display="block">e^{x+iy}=(\cosh x+\sinh x)(\cos y+i\sin y)</math> for the general complex exponential function.

Additionally, <math display="block">e^x = \sqrt{\frac{1 + \tanh x}{1 - \tanh x}} = \frac{1 + \tanh \frac{x}{2}}{1 - \tanh \frac{x}{2}}</math>

Hyperbolic functions for complex numbersEdit

Hyperbolic functions in the complex plane
<math>\sinh(z)</math> <math>\cosh(z)</math> <math>\tanh(z)</math> <math>\coth(z)</math> <math>\operatorname{sech}(z)</math> <math>\operatorname{csch}(z)</math>

Since the exponential function can be defined for any complex argument, we can also extend the definitions of the hyperbolic functions to complex arguments. The functions Template:Math and Template:Math are then holomorphic.

Relationships to ordinary trigonometric functions are given by Euler's formula for complex numbers: <math display="block">\begin{align}

 e^{i x} &= \cos x + i \sin x \\
e^{-i x} &= \cos x - i \sin x

\end{align}</math> so: <math display="block">\begin{align}

  \cosh(ix) &= \frac{1}{2} \left(e^{i x} + e^{-i x}\right) = \cos x \\
  \sinh(ix) &= \frac{1}{2} \left(e^{i x} - e^{-i x}\right) = i \sin x \\
\cosh(x+iy) &= \cosh(x) \cos(y) + i \sinh(x) \sin(y) \\
\sinh(x+iy) &= \sinh(x) \cos(y) + i \cosh(x) \sin(y) \\
  \tanh(ix) &= i \tan x \\
    \cosh x &= \cos(ix) \\
    \sinh x &= - i \sin(ix) \\
    \tanh x &= - i \tan(ix)

\end{align}</math>

Thus, hyperbolic functions are periodic with respect to the imaginary component, with period <math>2 \pi i</math> (<math>\pi i</math> for hyperbolic tangent and cotangent).

See alsoEdit

ReferencesEdit

Template:Reflist

External linksEdit

Template:Sister project

Template:Trigonometric and hyperbolic functions

Template:Authority control