In formal language theory, in particular in algorithmic learning theory, a class C of languages has finite thickness if every string is contained in at most finitely many languages in C. This condition was introduced by Dana Angluin as a sufficient condition for C being identifiable in the limit. <ref>Template:Cite journal (citeseer.ist.psu.edu); here: Condition 3, p.123 mid. Angluin's original requirement (every non-empty string set be contained in at most finitely many languages) is equivalent.</ref>

The related notion of M-finite thicknessEdit

Given a language L and an indexed class C = { L1, L2, L3, ... } of languages, a member language LjC is called a minimal concept of L within C if LLj, but not LLiLj for any LiC.<ref>Template:Cite book; here: Definition 25</ref> The class C is said to satisfy the MEF-condition if every finite subset D of a member language LiC has a minimal concept LjLi. Symmetrically, C is said to satisfy the MFF-condition if every nonempty finite set D has at most finitely many minimal concepts in C. Finally, C is said to have M-finite thickness if it satisfies both the MEF- and the MFF-condition. <ref>Ambainis et al. 1997, Definition 26</ref>

Finite thickness implies M-finite thickness.<ref>Ambainis et al. 1997, Corollary 29</ref> However, there are classes that are of M-finite thickness but not of finite thickness (for example, any class of languages C = { L1, L2, L3, ... } such that L1L2L3 ⊆ ...).

ReferencesEdit

Template:Reflist


Template:Comp-sci-theory-stub