Template:Short description
{{#invoke:other uses|otheruses}}
Template:Sidebar with collapsible groups
In a positional numeral system, the radix (Template:Plural formTemplate:Nbsradices) or base is the number of unique digits, including the digit zero, used to represent numbers. For example, for the decimal system (the most common system in use today) the radix is ten, because it uses the ten digits from 0 through 9.
In any standard positional numeral system, a number is conventionally written as Template:Nowrap with x as the string of digits and y as its base. For base ten, the subscript is usually assumed and omitted (together with the enclosing parentheses), as it is the most common way to express value. For example, (100)10 is equivalent to 100 (the decimal system is implied in the latter) and represents the number one hundred, while (100)2 (in the binary system with base 2) represents the number four.<ref name="morris_mano_p13_14"/>
EtymologyEdit
Radix is a Latin word for "root". Root can be considered a synonym for base, in the arithmetical sense.
In numeral systemsEdit
Generally, in a system with radix b (Template:Nowrap), a string of digits Template:Nowrap denotes the number Template:Nowrap, where Template:Nowrap.<ref name="morris_mano_p13_14">
Template:Cite book</ref> In contrast to decimal, or radix 10, which has a ones' place, tens' place, hundreds' place, and so on, radix b would have a ones' place, then a b1s' place, a b2s' place, etc.<ref>{{#invoke:citation/CS1|citation
|CitationClass=web
}}</ref>
For example, if b = 12, a string of digits such as 59A (where the letter "A" represents the value of ten) would represent the value Template:Nowrap = 838 in base 10.
Commonly used numeral systems include:
Base/radix
|
Name
|
Description
|
2
|
Binary numeral system
|
Used internally by nearly all computers. The two digits are "0" and "1", expressed from switches displaying OFF and ON, respectively. Used in most electric counters.
|
8
|
Octal system
|
Used occasionally in computing. The eight digits are "0"–"7" and represent 3 bits (23).
|
10
|
Decimal system
|
Used by humans in the wide majority of cultures. Its ten digits are "0"–"9". Used in most mechanical counters.
|
12
|
Duodecimal (dozenal) system
|
Sometimes advocated due to divisibility by 2, 3, 4, and 6. It was traditionally used as part of quantities expressed in dozens and grosses.
|
16
|
Hexadecimal system
|
Often used in computing as a more compact representation of binary (1 hex digit per 4 bits). The sixteen digits are "0"–"9" followed by "A"–"F" or "a"–"f".
|
20
|
Vigesimal system
|
Traditional numeral system in several cultures, still used by some for counting. Historically also known as the score system in English, now most famous in the phrase "four score and seven years ago" in the Gettysburg Address.
|
36
|
Base36
|
Base36 is a binary-to-text encoding scheme that represents binary data in an ASCII string format by translating it into a radix-36 representation. The choice of 36 is convenient in that the digits can be represented using the Arabic numerals 0–9 and the Latin letters A–Z (the ISO basic Latin alphabet). Each base36 digit needs less than 6 bits of information to be represented.
|
60
|
Sexagesimal system
|
Originally used in modified form in ancient Sumer and passed to the Babylonians.<ref>
Template:Cite book</ref> Used today as the basis of modern circular coordinate system (degrees, minutes, and seconds) and time measuring (minutes, and seconds) by analogy to the rotation of the Earth.
|
Template:For
The octal and hexadecimal systems are often used in computing because of their ease as shorthand for binary. Every hexadecimal digit corresponds to a sequence of four binary digits, since sixteen is the fourth power of two; for example, hexadecimal 7816 is binary Template:Gaps2. Similarly, every octal digit corresponds to a unique sequence of three binary digits, since eight is the cube of two.
This representation is unique. Let b be a positive integer greater than 1. Then every positive integer a can be expressed uniquely in the form
- <math>a = r_m b^m + r_{m-1} b^{m-1} + \dotsb + r_1 b + r_0,</math>
where m is a nonnegative integer and the r's are integers such that
- 0 < rm < b and 0 ≤ ri < b for i = 0, 1, ... , m − 1.<ref>Template:Harvtxt</ref>
Radices are usually natural numbers. However, other positional systems are possible, for example, golden ratio base (whose radix is a non-integer algebraic number),<ref>
Template:Cite journal</ref> and negative base (whose radix is negative).<ref>
Template:Cite journal</ref>
A negative base allows the representation of negative numbers without the use of a minus sign. For example, let b = −10. Then a string of digits such as 19 denotes the (decimal) number Template:Nowrap = −1.
Table of basesEdit
Different bases are especially used in connection with computers.
The commonly used bases are 10 (decimal), 2 (binary), 8 (octal), and 16 (hexadecimal).
A byte with 8 bits can represent values from 0 to 255, often expressed with leading zeros in base 2, 8 or 16 to give the same length.<ref>{{#invoke:citation/CS1|citation
|CitationClass=web
}}</ref>
The first row in the tables is the base written in decimal.
0–15
10 |
2 |
8 |
16
|
0
|
00000000 |
000 |
00
|
1
|
00000001 |
001 |
01
|
2
|
00000010 |
002 |
02
|
3
|
00000011 |
003 |
03
|
4
|
00000100 |
004 |
04
|
5
|
00000101 |
005 |
05
|
6
|
00000110 |
006 |
06
|
7
|
00000111 |
007 |
07
|
8
|
00001000 |
010 |
08
|
9
|
00001001 |
011 |
09
|
10
|
00001010 |
012 |
0a
|
11
|
00001011 |
013 |
0b
|
12
|
00001100 |
014 |
0c
|
13
|
00001101 |
015 |
0d
|
14
|
00001110 |
016 |
0e
|
15
|
00001111 |
017 |
0f
|
16–31
10 |
2 |
8 |
16
|
16
|
00010000 |
020 |
10
|
17
|
00010001 |
021 |
11
|
18
|
00010010 |
022 |
12
|
19
|
00010011 |
023 |
13
|
20
|
00010100 |
024 |
14
|
21
|
00010101 |
025 |
15
|
22
|
00010110 |
026 |
16
|
23
|
00010111 |
027 |
17
|
24
|
00011000 |
030 |
18
|
25
|
00011001 |
031 |
19
|
26
|
00011010 |
032 |
1a
|
27
|
00011011 |
033 |
1b
|
28
|
00011100 |
034 |
1c
|
29
|
00011101 |
035 |
1d
|
30
|
00011110 |
036 |
1e
|
31
|
00011111 |
037 |
1f
|
32–47
10 |
2 |
8 |
16
|
32
|
00100000 |
040 |
20
|
33
|
00100001 |
041 |
21
|
34
|
00100010 |
042 |
22
|
35
|
00100011 |
043 |
23
|
36
|
00100100 |
044 |
24
|
37
|
00100101 |
045 |
25
|
38
|
00100110 |
046 |
26
|
39
|
00100111 |
047 |
27
|
40
|
00101000 |
050 |
28
|
41
|
00101001 |
051 |
29
|
42
|
00101010 |
052 |
2a
|
43
|
00101011 |
053 |
2b
|
44
|
00101100 |
054 |
2c
|
45
|
00101101 |
055 |
2d
|
46
|
00101110 |
056 |
2e
|
47
|
00101111 |
057 |
2f
|
48–63
10 |
2 |
8 |
16
|
48
|
00110000 |
060 |
30
|
49
|
00110001 |
061 |
31
|
50
|
00110010 |
062 |
32
|
51
|
00110011 |
063 |
33
|
52
|
00110100 |
064 |
34
|
53
|
00110101 |
065 |
35
|
54
|
00110110 |
066 |
36
|
55
|
00110111 |
067 |
37
|
56
|
00111000 |
070 |
38
|
57
|
00111001 |
071 |
39
|
58
|
00111010 |
072 |
3a
|
59
|
00111011 |
073 |
3b
|
60
|
00111100 |
074 |
3c
|
61
|
00111101 |
075 |
3d
|
62
|
00111110 |
076 |
3e
|
63
|
00111111 |
077 |
3f
|
64–79
10 |
2 |
8 |
16
|
64
|
01000000 |
100 |
40
|
65
|
01000001 |
101 |
41
|
66
|
01000010 |
102 |
42
|
67
|
01000011 |
103 |
43
|
68
|
01000100 |
104 |
44
|
69
|
01000101 |
105 |
45
|
70
|
01000110 |
106 |
46
|
71
|
01000111 |
107 |
47
|
72
|
01001000 |
110 |
48
|
73
|
01001001 |
111 |
49
|
74
|
01001010 |
112 |
4a
|
75
|
01001011 |
113 |
4b
|
76
|
01001100 |
114 |
4c
|
77
|
01001101 |
115 |
4d
|
78
|
01001110 |
116 |
4e
|
79
|
01001111 |
117 |
4f
|
80–95
10 |
2 |
8 |
16
|
80
|
01010000 |
120 |
50
|
81
|
01010001 |
121 |
51
|
82
|
01010010 |
122 |
52
|
83
|
01010011 |
123 |
53
|
84
|
01010100 |
124 |
54
|
85
|
01010101 |
125 |
55
|
86
|
01010110 |
126 |
56
|
87
|
01010111 |
127 |
57
|
88
|
01011000 |
130 |
58
|
89
|
01011001 |
131 |
59
|
90
|
01011010 |
132 |
5a
|
91
|
01011011 |
133 |
5b
|
92
|
01011100 |
134 |
5c
|
93
|
01011101 |
135 |
5d
|
94
|
01011110 |
136 |
5e
|
95
|
01011111 |
137 |
5f
|
96–111
10 |
2 |
8 |
16
|
96
|
01100000 |
140 |
60
|
97
|
01100001 |
141 |
61
|
98
|
01100010 |
142 |
62
|
99
|
01100011 |
143 |
63
|
100
|
01100100 |
144 |
64
|
101
|
01100101 |
145 |
65
|
102
|
01100110 |
146 |
66
|
103
|
01100111 |
147 |
67
|
104
|
01101000 |
150 |
68
|
105
|
01101001 |
151 |
69
|
106
|
01101010 |
152 |
6a
|
107
|
01101011 |
153 |
6b
|
108
|
01101100 |
154 |
6c
|
109
|
01101101 |
155 |
6d
|
110
|
01101110 |
156 |
6e
|
111
|
01101111 |
157 |
6f
|
112–127
10 |
2 |
8 |
16
|
112
|
01110000 |
160 |
70
|
113
|
01110001 |
161 |
71
|
114
|
01110010 |
162 |
72
|
115
|
01110011 |
163 |
73
|
116
|
01110100 |
164 |
74
|
117
|
01110101 |
165 |
75
|
118
|
01110110 |
166 |
76
|
119
|
01110111 |
167 |
77
|
120
|
01111000 |
170 |
78
|
121
|
01111001 |
171 |
79
|
122
|
01111010 |
172 |
7a
|
123
|
01111011 |
173 |
7b
|
124
|
01111100 |
174 |
7c
|
125
|
01111101 |
175 |
7d
|
126
|
01111110 |
176 |
7e
|
127
|
01111111 |
177 |
7f
|
128–143
10 |
2 |
8 |
16
|
128
|
10000000 |
200 |
80
|
129
|
10000001 |
201 |
81
|
130
|
10000010 |
202 |
82
|
131
|
10000011 |
203 |
83
|
132
|
10000100 |
204 |
84
|
133
|
10000101 |
205 |
85
|
134
|
10000110 |
206 |
86
|
135
|
10000111 |
207 |
87
|
136
|
10001000 |
210 |
88
|
137
|
10001001 |
211 |
89
|
138
|
10001010 |
212 |
8a
|
139
|
10001011 |
213 |
8b
|
140
|
10001100 |
214 |
8c
|
141
|
10001101 |
215 |
8d
|
142
|
10001110 |
216 |
8e
|
143
|
10001111 |
217 |
8f
|
144–159
10 |
2 |
8 |
16
|
144
|
10010000 |
220 |
90
|
145
|
10010001 |
221 |
91
|
146
|
10010010 |
222 |
92
|
147
|
10010011 |
223 |
93
|
148
|
10010100 |
224 |
94
|
149
|
10010101 |
225 |
95
|
150
|
10010110 |
226 |
96
|
151
|
10010111 |
227 |
97
|
152
|
10011000 |
230 |
98
|
153
|
10011001 |
231 |
99
|
154
|
10011010 |
232 |
9a
|
155
|
10011011 |
233 |
9b
|
156
|
10011100 |
234 |
9c
|
157
|
10011101 |
235 |
9d
|
158
|
10011110 |
236 |
9e
|
159
|
10011111 |
237 |
9f
|
160–175
10 |
2 |
8 |
16
|
160
|
10100000 |
240 |
a0
|
161
|
10100001 |
241 |
a1
|
162
|
10100010 |
242 |
a2
|
163
|
10100011 |
243 |
a3
|
164
|
10100100 |
244 |
a4
|
165
|
10100101 |
245 |
a5
|
166
|
10100110 |
246 |
a6
|
167
|
10100111 |
247 |
a7
|
168
|
10101000 |
250 |
a8
|
169
|
10101001 |
251 |
a9
|
170
|
10101010 |
252 |
aa
|
171
|
10101011 |
253 |
ab
|
172
|
10101100 |
254 |
ac
|
173
|
10101101 |
255 |
ad
|
174
|
10101110 |
256 |
ae
|
175
|
10101111 |
257 |
af
|
176–191
10 |
2 |
8 |
16
|
176
|
10110000 |
260 |
b0
|
177
|
10110001 |
261 |
b1
|
178
|
10110010 |
262 |
b2
|
179
|
10110011 |
263 |
b3
|
180
|
10110100 |
264 |
b4
|
181
|
10110101 |
265 |
b5
|
182
|
10110110 |
266 |
b6
|
183
|
10110111 |
267 |
b7
|
184
|
10111000 |
270 |
b8
|
185
|
10111001 |
271 |
b9
|
186
|
10111010 |
272 |
ba
|
187
|
10111011 |
273 |
bb
|
188
|
10111100 |
274 |
bc
|
189
|
10111101 |
275 |
bd
|
190
|
10111110 |
276 |
be
|
191
|
10111111 |
277 |
bf
|
192–207
10 |
2 |
8 |
16
|
192
|
11000000 |
300 |
c0
|
193
|
11000001 |
301 |
c1
|
194
|
11000010 |
302 |
c2
|
195
|
11000011 |
303 |
c3
|
196
|
11000100 |
304 |
c4
|
197
|
11000101 |
305 |
c5
|
198
|
11000110 |
306 |
c6
|
199
|
11000111 |
307 |
c7
|
200
|
11001000 |
310 |
c8
|
201
|
11001001 |
311 |
c9
|
202
|
11001010 |
312 |
ca
|
203
|
11001011 |
313 |
cb
|
204
|
11001100 |
314 |
cc
|
205
|
11001101 |
315 |
cd
|
206
|
11001110 |
316 |
ce
|
207
|
11001111 |
317 |
cf
|
208–223
10 |
2 |
8 |
16
|
208
|
11010000 |
320 |
d0
|
209
|
11010001 |
321 |
d1
|
210
|
11010010 |
322 |
d2
|
211
|
11010011 |
323 |
d3
|
212
|
11010100 |
324 |
d4
|
213
|
11010101 |
325 |
d5
|
214
|
11010110 |
326 |
d6
|
215
|
11010111 |
327 |
d7
|
216
|
11011000 |
330 |
d8
|
217
|
11011001 |
331 |
d9
|
218
|
11011010 |
332 |
da
|
219
|
11011011 |
333 |
db
|
220
|
11011100 |
334 |
dc
|
221
|
11011101 |
335 |
dd
|
222
|
11011110 |
336 |
de
|
223
|
11011111 |
337 |
df
|
224–239
10 |
2 |
8 |
16
|
224
|
11100000 |
340 |
e0
|
225
|
11100001 |
341 |
e1
|
226
|
11100010 |
342 |
e2
|
227
|
11100011 |
343 |
e3
|
228
|
11100100 |
344 |
e4
|
229
|
11100101 |
345 |
e5
|
230
|
11100110 |
346 |
e6
|
231
|
11100111 |
347 |
e7
|
232
|
11101000 |
350 |
e8
|
233
|
11101001 |
351 |
e9
|
234
|
11101010 |
352 |
ea
|
235
|
11101011 |
353 |
eb
|
236
|
11101100 |
354 |
ec
|
237
|
11101101 |
355 |
ed
|
238
|
11101110 |
356 |
ee
|
239
|
11101111 |
357 |
ef
|
240–255
10 |
2 |
8 |
16
|
240
|
11110000 |
360 |
f0
|
241
|
11110001 |
361 |
f1
|
242
|
11110010 |
362 |
f2
|
243
|
11110011 |
363 |
f3
|
244
|
11110100 |
364 |
f4
|
245
|
11110101 |
365 |
f5
|
246
|
11110110 |
366 |
f6
|
247
|
11110111 |
367 |
f7
|
248
|
11111000 |
370 |
f8
|
249
|
11111001 |
371 |
f9
|
250
|
11111010 |
372 |
fa
|
251
|
11111011 |
373 |
fb
|
252
|
11111100 |
374 |
fc
|
253
|
11111101 |
375 |
fd
|
254
|
11111110 |
376 |
fe
|
255
|
11111111 |
377 |
ff
|
Template:Reflist
ReferencesEdit
External linksEdit
Template:Sister project