Template:About Template:Short description Template:Ear series The ossicles (also called auditory ossicles) are three irregular bones in the middle ear of humans and other mammals, and are among the smallest bones in the human body. Although the term "ossicle" literally means "tiny bone" (from Latin ossiculum) and may refer to any small bone throughout the body, it typically refers specifically to the malleus, incus and stapes ("hammer, anvil, and stirrup") of the middle ear.

The auditory ossicles serve as a kinematic chain to transmit and amplify (intensify) sound vibrations collected from the air by the ear drum to the fluid-filled labyrinth (cochlea). The absence or pathology of the auditory ossicles would constitute a moderate-to-severe conductive hearing loss.

StructureEdit

Template:See also

File:Slide1ghe.JPG
Anatomy of the three ossicles

The ossicles are, in order from the eardrum to the inner ear (from superficial to deep): the malleus, incus, and stapes, terms that in Latin are translated as "the hammer, anvil, and stirrup".<ref>Template:Cite journal</ref>

|CitationClass=web }}</ref>

DevelopmentEdit

Studies have shown that ear bones in mammal embryos are attached to the dentary, which is part of the lower jaw. These are ossified portions of cartilage—called Meckel's cartilage—that are attached to the jaw. As the embryo develops, the cartilage hardens to form bone. Later in development, the bone structure breaks loose from the jaw and migrates to the inner ear area. The structure is known as the middle ear, and is made up of the stapes, incus, malleus, and tympanic membrane. These correspond to the columella, quadrate, articular, and angular structures in the amphibian, bird or reptile jaw.<ref>Template:Cite journal</ref>

EvolutionEdit

{{#invoke:Labelled list hatnote|labelledList|Main article|Main articles|Main page|Main pages}}

FunctionEdit

{{ safesubst:#invoke:Unsubst||date=__DATE__ |$B= {{ safesubst:#invoke:Unsubst||date=__DATE__ |$B= Template:Ambox }} }} As sound waves vibrate the tympanic membrane (eardrum), it in turn moves the nearest ossicle, the malleus, to which it is attached. The malleus then transmits the vibrations, via the incus, to the stapes, and so ultimately to the membrane of the fenestra ovalis (oval window), the opening to the vestibule of the inner ear.

Sound traveling through the air is mostly reflected when it comes into contact with a liquid medium; only about 1/30 of the sound energy moving through the air would be transferred into the liquid.<ref>Hill, R.W., Wyse, G.A. & Anderson, M. (2008). Animal Physiology, 2nd ed..</ref> This is observed from the abrupt cessation of sound that occurs when the head is submerged underwater. This is because the relative incompressibility of a liquid presents resistance to the force of the sound waves traveling through the air. The ossicles give the eardrum a mechanical advantage via lever action and a reduction in the area of force distribution; the resulting vibrations are stronger but don't move as far. This allows more efficient coupling than if the sound waves were transmitted directly from the outer ear to the oval window. This reduction in the area of force application allows a large enough increase in pressure to transfer most of the sound energy into the liquid. The increased pressure will compress the fluid found in the cochlea and transmit the stimulus. Thus, the lever action of the ossicles changes the vibrations so as to improve the transfer and reception of sound, and is a form of impedance matching.

However, the extent of the movements of the ossicles is controlled (and constricted) by two muscles attached to them (the tensor tympani and the stapedius). It is believed that these muscles can contract to dampen the vibration of the ossicles, in order to protect the inner ear from excessively loud noise (theory 1) and that they give better frequency resolution at higher frequencies by reducing the transmission of low frequencies (theory 2) (see acoustic reflex). These muscles are more highly developed in bats and serve to block outgoing cries of the bats during echolocation (SONAR).

Clinical relevanceEdit

Occasionally the joints between the ossicles become rigid. One condition, otosclerosis, results in the fusing of the stapes to the oval window. This reduces hearing and may be treated surgically using a passive middle ear implant.Template:Explain

HistoryEdit

There is some doubt as to the discoverers of the auditory ossicles and several anatomists from the early 16th century have the discovery attributed to them with the two earliest being Alessandro Achillini and Jacopo Berengario da Carpi.<ref>Template:Cite journal</ref> Several sources, including Eustachi and Casseri,<ref>Alidosi, GNP. I dottori Bolognesi di teologia, filosofia, medicina e d'arti liberali dall'anno 1000 per tutto marzo del 1623, Tebaldini, N., Bologna, 1623. http://gallica.bnf.fr/ark:/12148/bpt6k51029z/f35.image#</ref> attribute the discovery of the malleus and incus to the anatomist and philosopher Achillini.<ref>Lind, L. R. Studies in pre-Vesalian anatomy. Biography, translations, documents, American Philosophical Society, Philadelphia, 1975. p.40</ref> The first written description of the malleus and incus was by Berengario da Carpi in his Commentaria super anatomia Mundini (1521),<ref>Jacopo Berengario da Carpi,Commentaria super anatomia Mundini, Bologna, 1521. https://archive.org/details/ita-bnc-mag-00001056-001</ref> although he only briefly described two bones and noted their theoretical association with the transmission of sound.<ref name="auto">O'Malley, C.D. Andreas Vesalius of Brussels, 1514–1564. Berkeley: University of California Press, 1964. p. 120</ref> Niccolo Massa's Liber introductorius anatomiae<ref>Niccolo Massa, Liber introductorius anatomiae, Venice, 1536. p.166. https://www.digitale-sammlungen.de/en/view/bsb10151904?page=1</ref> described the same bones in slightly more detail and likened them both to little hammers.<ref name="auto" /> A much more detailed description of the first two ossicles followed in Andreas Vesalius' De humani corporis fabrica<ref>Andreas Vesalius, De humani corporis fabrica. Johannes Oporinus, Basle, 1543.</ref> in which he devoted a chapter to them. Vesalius was the first to compare the second element of the ossicles to an anvil although he offered the molar as an alternative comparison for its shape.<ref>O'Malley, C.D. Andreas Vesalius of Brussels, 1514–1564. Berkeley: University of California Press, 1964. p. 121</ref> The first published description of the stapes came in Pedro Jimeno's Dialogus de re medica (1549)<ref>Pedro Jimeno, Dialogus de re medica, Johannes Mey, Valencia, 1549. https://archive.org/details/dialogusderemed00jimegoog</ref> although it had been previously described in public lectures by Giovanni Filippo Ingrassia at the University of Naples as early as 1546.<ref>Template:Cite journal</ref>

The term ossicle derives from {{#invoke:Lang|lang}}, a diminutive of "bone" (Template:Langx; genitive {{#invoke:Lang|lang}}).<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> The malleus gets its name from Latin malleus, meaning "hammer",<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> the incus gets its name from Latin incus meaning "anvil" from incudere meaning "to forge with a hammer",<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> and the stapes gets its name from Modern Latin "stirrup", probably an alteration of Late Latin stapia related to stare "to stand" and pedem, an accusative of pes "foot", so called because the bone is shaped like a stirrup – this was an invented Modern Latin word for "stirrup", for which there was no classical Latin word, as the ancients did not use stirrups.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

See alsoEdit

Template:Anatomy-terms

ReferencesEdit

Template:Reflist

External linksEdit

Template:Sister project

Template:Auditory system Template:HumanBones

Template:Authority control