Template:Short description

File:Pentasulfur-titanocene complex structure.png
The compound Template:Chem2 is an example of a polysulfide complex

Polysulfides are a class of chemical compounds derived from anionic chains of sulfur atoms.<ref>Template:Citation</ref> There are two main classes of polysulfides: inorganic and organic. The inorganic polysulfides have the general formula Template:Chem. These anions are the conjugate bases of polysulfanes Template:Chem2. Organic polysulfides generally have the formulae Template:Chem2, where R is an alkyl or aryl group.<ref name=Steudel>Template:Cite encyclopedia</ref>

Polysulfide salts and complexesEdit

File:Na2S5Packing.tif
Fragment of the solid-state structure of Template:Chem2. The Template:Chem2 chain consists of the yellow-colored atoms.<ref>Template:Cite journal</ref>

The alkali metal polysulfides arise by treatment of a solution of the sulfide with elemental sulfur, e.g. sodium sulfide to sodium polysulfide:

Template:Chem

In some cases, these anions have been obtained as organic salts, which are soluble in organic solvents.<ref>Template:Cite journal</ref>

The energy released in the reaction of sodium and elemental sulfur is the basis of battery technology. The sodium–sulfur battery and the lithium–sulfur battery require high temperatures to maintain liquid polysulfide and Template:Chem2-conductive membranes that are unreactive toward sodium, sulfur, and sodium sulfide.

Polysulfides are ligands in coordination chemistry. Examples of transition metal polysulfido complexes include [[titanocene pentasulfide|Template:Chem2]], Template:Chem2, and Template:Chem2.<ref>Template:Cite journal</ref> Main group elements also form polysulfides.<ref>Template:Cite book</ref>

Organic polysulfidesEdit

In commerce, the term "polysulfide" usually refers to a class of polymers with alternating chains of several sulfur atoms and hydrocarbons. They have the formula Template:Chem2. In this formula n indicates the number of sulfur atoms (or "rank"). Polysulfide polymers can be synthesized by condensation polymerization reactions between organic dihalides and alkali metal salts of polysulfide anions:

Template:Chem2

Dihalides used in this condensation polymerization are dichloroalkanes such as 1,2-dichloroethane, bis(2-chloroethoxy)methane (Template:Chem2), and 1,3-dichloropropane. The polymers are called thiokols. In some cases, polysulfide polymers can be formed by ring-opening polymerization reactions.

Polysulfide polymers are also prepared by the addition of polysulfanes to alkenes. An idealized equation is:

Template:Chem2

In reality, homogeneous samples of Template:Chem2 are difficult to prepare.<ref name=Steudel/>

Polysulfide polymers are insoluble in water, oils, and many other organic solvents. Because of their solvent resistance, these materials find use as sealants to fill the joints in pavement, automotive window glass, and aircraft structures.

Polymers containing one or two sulfur atoms separated by hydrocarbon sequences are usually not classified polysulfides, e.g. poly(p-phenylene) sulfide Template:Chem2.

Polysulfides in vulcanized rubberEdit

File:Vulcanization of POLYIsoprene V.2.png
Idealized structure of two strands (Template:Ifsubst style="color:blue">blue and Template:Ifsubst style="color:green">green) of natural rubber after vulcanization with elemental sulfur, which forms polysulfide linkages.

Many commercial elastomers contain polysulfides as crosslinks. These crosslinks interconnect neighboring polymer chains, thereby conferring rigidity. The degree of rigidity is related to the number of crosslinks. Elastomers, therefore, have a characteristic ability to return to their original shape after being stretched or compressed. Because of this memory for their original cured shape, elastomers are commonly referred to as rubbers. The process of crosslinking the polymer chains in these polymers with sulfur is called vulcanization. The sulfur chains attach themselves to the allylic carbon atoms, which are adjacent to C=C linkages. Vulcanization is a step in the processing of several classes of rubbers, including polychloroprene (Neoprene), styrene-butadiene, and polyisoprene, which is chemically similar to natural rubber. Charles Goodyear's discovery of vulcanization, involving the heating of polyisoprene with sulfur, was revolutionary because it converted a sticky and almost useless material into an elastomer that could be fabricated into useful products.

Occurrence in gas giantsEdit

In addition to water and ammonia, the clouds in the atmospheres of the gas giant planets contain ammonium sulfides. The reddish-brownish clouds are attributed to polysulfides, arising from the exposure of the ammonium sulfides to light.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

PropertiesEdit

Polysulfides, like sulfides, can induce stress corrosion cracking in carbon steel and stainless steel.

See alsoEdit

ReferencesEdit

Template:Reflist

Template:Authority control