Progressive function
Template:More citations needed In mathematics, a progressive function ƒ ∈ L2(R) is a function whose Fourier transform is supported by positive frequencies only:<ref>Template:Cite book</ref>
- <math>\mathop{\rm supp}\hat{f} \subseteq \mathbb{R}_+.</math>
It is called super regressive if and only if the time reversed function f(−t) is progressive, or equivalently, if
- <math>\mathop{\rm supp}\hat{f} \subseteq \mathbb{R}_-.</math>
The complex conjugate of a progressive function is regressive, and vice versa.
The space of progressive functions is sometimes denoted <math>H^2_+(R)</math>, which is known as the Hardy space of the upper half-plane. This is because a progressive function has the Fourier inversion formula
- <math>f(t) = \int_0^\infty e^{2\pi i st} \hat f(s)\, ds</math>
and hence extends to a holomorphic function on the upper half-plane <math>\{ t + iu: t, u \in R, u \geq 0 \}</math>
by the formula
- <math>f(t+iu) = \int_0^\infty e^{2\pi i s(t+iu)} \hat f(s)\, ds
= \int_0^\infty e^{2\pi i st} e^{-2\pi su} \hat f(s)\, ds.</math>
Conversely, every holomorphic function on the upper half-plane which is uniformly square-integrable on every horizontal line will arise in this manner.
Regressive functions are similarly associated with the Hardy space on the lower half-plane <math>\{ t + iu: t, u \in R, u \leq 0 \}</math>.
ReferencesEdit
{{#if: | This article incorporates material from the following PlanetMath articles, which are licensed under the Creative Commons Attribution/Share-Alike License: {{#if: | progressive function | {{#if: 5993 | progressive function | [{{{sourceurl}}} progressive function] }} }}, {{#if: | {{{title2}}} | {{#if: | {{{title2}}} | [{{{sourceurl2}}} {{{title2}}}] }} }}{{#if: | , {{#if: | {{{title3}}} | {{#if: | {{{title3}}} | [{{{sourceurl3}}} {{{title3}}}] }} }} }}{{#if: | , {{#if: | {{{title4}}} | {{#if: | {{{title4}}} | [{{{sourceurl4}}} {{{title4}}}] }} }} }}{{#if: | , {{#if: | {{{title5}}} | {{#if: | {{{title5}}} | [{{{sourceurl5}}} {{{title5}}}] }} }} }}{{#if: | , {{#if: | {{{title6}}} | {{#if: | {{{title6}}} | [{{{sourceurl6}}} {{{title6}}}] }} }} }}{{#if: | , {{#if: | {{{title7}}} | {{#if: | {{{title7}}} | [{{{sourceurl7}}} {{{title7}}}] }} }} }}{{#if: | , {{#if: | {{{title8}}} | {{#if: | {{{title8}}} | [{{{sourceurl8}}} {{{title8}}}] }} }} }}{{#if: | , {{#if: | {{{title9}}} | {{#if: | {{{title9}}} | [{{{sourceurl9}}} {{{title9}}}] }} }} }}. | This article incorporates material from {{#if: | progressive function | progressive function}} on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License. }}