Template:Short description Template:Distinguish Template:Infobox medical condition

Respiratory failure results from inadequate gas exchange by the respiratory system, meaning that the arterial oxygen, carbon dioxide, or both cannot be kept at normal levels. A drop in the oxygen carried in the blood is known as hypoxemia; a rise in arterial carbon dioxide levels is called hypercapnia. Respiratory failure is classified as either Type 1 or Type 2, based on whether there is a high carbon dioxide level, and can be acute or chronic. In clinical trials, the definition of respiratory failure usually includes increased respiratory rate, abnormal blood gases (hypoxemia, hypercapnia, or both), and evidence of increased work of breathing. Respiratory failure causes an altered state of consciousness due to ischemia in the brain.

The typical partial pressure reference values are oxygen Pa [[Oxygen|Template:Chem]] more than 80 mmHg (11 kPa) and carbon dioxide Pa [[Carbon dioxide|Template:CO2]] less than 45 mmHg (6.0 kPa).<ref name=mirabile/>

CauseEdit

A variety of conditions that can potentially result in respiratory failure.<ref name="mirabile">Template:Citation</ref> The etiologies of each type of respiratory failure (see below) may differ, as well. Different types of conditions may cause respiratory failure:

  • Conditions that reduce the flow of air into and out of the lungs, including physical obstruction by foreign bodies or masses and reduced breathing due to drugs or changes to the chest.<ref name=mirabile/>
  • Conditions that impair the lungs' blood supply. These include thromboembolic conditions and conditions that reduce the output of the right heart, such as right heart failure and some myocardial infarctions.
  • Conditions that limit the ability of the lung tissue to exchange oxygen and carbon dioxide between the blood and the air within the lungs. Any disease which can damage the lung tissue can fit into this category. The most common causes are (in no particular order) infections, interstitial lung disease, and pulmonary edema.
File:Respiratory failure.jpg
Causes of respiratory failure

TypesEdit

Respiratory failure is generally organized into 4 types.Template:Citation needed Below is a diagram that provides a general overview of the 4 types of respiratory failure, their distinguishing characteristics, and major causes of each.

Type 1Edit

Type 1 respiratory failure is characterized by a low level of oxygen in the blood (hypoxemia) (PaO2) < 60 mmHg with a normal (normocapnia) or low (hypocapnia) level of carbon dioxide (PaCO2) in the blood.<ref name=mirabile/>

The fundamental defect in type 1 respiratory failure is a failure of oxygenation characterized by:

PaO2 decreased (< Template:Convert)
PaCO2 normal or decreased (<Template:Convert)
PA-aO2 increased

Type I respiratory failure is caused by conditions that affect oxygenation and therefore lead to lower-than-normal oxygen in the blood. These include:

Type 2Edit

Hypoxemia (PaO2 <8kPa or normal) with hypercapnia (PaCO2 >6.0kPa).

The basic defect in type 2 respiratory failure is characterized by:

PaO2 decreased (< Template:Convert)or normal
PaCO2 increased (> Template:Convert)
PA-aO2 normal
pH <7.35

Type 2 respiratory failure is caused by inadequate alveolar ventilation; both oxygen and carbon dioxide are affected. Defined as the buildup of carbon dioxide levels (PaCO2) that has been generated by the body but cannot be eliminated. The underlying causes include:

Type 3Edit

Type 3 respiratory failure is a type of Type 1 respiratory failure, with decreased PaO2 (hypoxemia) and either normal or decreased PaCO2.<ref name=mirabile/> However, because of its prevalence, it has been given its own category. Type 3 respiratory failure is often referred to as peri-operative respiratory failure, because it is distinguished by being a Type 1 respiratory failure that is specifically associated with an operation, procedure, or surgery.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

The pathophysiology of type 3 respiratory failure often includes lung atelectasis, which is a term used to describe a collapsing of the functional units of the lung that allow for gas exchange. Because atelectasis occurs so commonly in the perioperative period, this form is also called perioperative respiratory failure. After general anesthesia, decreases in functional residual capacity leads to collapse of dependent lung units.<ref name=mirabile/>

Type 4Edit

Type 4 respiratory failure occurs when metabolic (oxygen) demands exceed what the cardiopulmonary system can provide.<ref name=mirabile/> It often results from hypoperfusion of respiratory muscles as in patients in shock, such as cardiogenic shock or hypovolemic shock. Patients in shock often experience respiratory distress due to pulmonary edema (e.g., in cardiogenic shock). Lactic acidosis and anemia can also result in type 4 respiratory failure.<ref name=mirabile/> However, type 1 and 2 are the most widely accepted.<ref name=mirabile/><ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref><ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

Physical examEdit

Physical exam findings often found in patients with respiratory failure include findings indicative of impaired oxygenation (low blood oxygen level). These include, but are not limited to, the following:

|CitationClass=web }}</ref>

  • Altered mental status (eg. confusion, lethargy)<ref name=nih/>
  • Clubbing of fingertips (see image right)<ref name=nih/>
  • Peripheral cyanosis (eg. bluish color on mucosal membranes or fingers and/or toes)
  • Tachypnea (faster breathing rate)<ref name=nih/>
  • Pale conjunctiva<ref name=nih/>

People with respiratory failure often exhibit other signs or symptoms that are associated with the underlying cause of their respiratory failure. For instance, if respiratory failure is caused by cardiogenic shock (decreased perfusion due to heart dysfunction, symptoms of heart dysfunction (e.g., pitting edema) are also expected.

DiagnosisEdit

Arterial blood gas (ABG) assessment is considered the gold standard diagnostic test for establishing a diagnosis of respiratory failure.<ref name=mirabile/> This is because ABG can be used to measure blood oxygen levels (PaO2), and respiratory failure (all types) is characterized by a low blood oxygen level.<ref name=mirabile/>

Alternative or supporting diagnostic methods include the following:

  • Capnometry: measures the amount of carbon dioxide in exhaled air.<ref name=mirabile/>
  • Pulse Oximetry: measures the fraction of hemoglobin saturated with oxygen (SpO2).<ref name=mirabile/>

Imaging (eg. ultrasonography, radiography) may be used to assist in the diagnostic workup. For example, it may be utilized to determine the etiology of a person's respiratory failure.

File:Arterial blood gas device.jpg
Arterial blood gas analyzer

TreatmentEdit

File:VIP Bird2.jpg
Mechanical ventilator

Treatment of the underlying cause is required, if possible. The treatment of acute respiratory failure may involve medication such as bronchodilators (for airways disease),<ref>Template:Cite journal</ref><ref>Template:Cite journal</ref> antibiotics (for infections), glucocorticoids (for numerous causes), diuretics (for pulmonary oedema), amongst others.<ref name=mirabile/><ref>Template:Cite journal</ref><ref>Template:Cite journal</ref> Respiratory failure resulting from an overdose of opioids may be treated with the antidote naloxone. In contrast, most benzodiazepine overdose does not benefit from its antidote, flumazenil.<ref>Template:Cite journal</ref> Respiratory therapy/respiratory physiotherapy may be beneficial in some cases of respiratory failure.<ref name = "Wong_2000">Template:Cite journal</ref><ref>Template:Cite journal</ref>

Type 1 respiratory failure may require oxygen therapy to achieve adequate oxygen saturation.<ref>Template:Cite journal</ref> Lack of oxygen response may indicate other modalities such as heated humidified high-flow therapy, continuous positive airway pressure or (if severe) endotracheal intubation and mechanical ventilation. .Template:Citation needed

Type 2 respiratory failure often requires non-invasive ventilation (NIV) unless medical therapy can improve the situation.<ref name=":0">Template:Cite journal</ref> Mechanical ventilation is sometimes indicated immediately or otherwise if NIV fails.<ref name=":0" /> Respiratory stimulants such as doxapram are now rarely used.<ref>Template:Cite journal</ref>

There is tentative evidence that in those with respiratory failure identified before arrival in hospital, continuous positive airway pressure can be helpful when started before conveying to hospital.<ref>Template:Cite journal</ref>

PrognosisEdit

Prognosis is highly variable and dependent on etiology and availability of appropriate treatment and management.<ref name="cc">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> One of three hospitalized cases of acute respiratory failure is fatal.<ref name=cc/>

See alsoEdit

ReferencesEdit

Template:Reflist

External linksEdit

Template:Medical resources Template:Respiratory pathology Template:Organ failure Template:Authority control