Self number
Template:Short description In number theory, a self number or Devlali number in a given number base <math>b</math> is a natural number that cannot be written as the sum of any other natural number <math>n</math> and the individual digits of <math>n</math>. 20 is a self number (in base 10), because no such combination can be found (all <math>n < 15</math> give a result less than 20; all other <math>n</math> give a result greater than 20). 21 is not, because it can be written as 15 + 1 + 5 using n = 15. These numbers were first described in 1949 by the Indian mathematician D. R. Kaprekar.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
Definition and propertiesEdit
Let <math>n</math> be a natural number. We define the <math>b</math>-self function for base <math>b > 1</math> <math>F_b : \mathbb{N} \rightarrow \mathbb{N}</math> to be the following:
- <math>F_{b}(n) = n + \sum_{i=0}^{k - 1} d_i. </math>
where <math>k = \lfloor \log_{b}{n} \rfloor + 1</math> is the number of digits in the number in base <math>b</math>, and
- <math>d_i = \frac{n \bmod{b^{i+1}} - n \bmod b^i}{b^i}</math>
is the value of each digit of the number. A natural number <math>n</math> is a <math>b</math>-self number if the preimage of <math>n</math> for <math>F_b</math> is the empty set.
In general, for even bases, all odd numbers below the base number are self numbers, since any number below such an odd number would have to also be a 1-digit number which when added to its digit would result in an even number. For odd bases, all odd numbers are self numbers.<ref name=CS384>Sándor & Crstici (2004) p.384</ref>
The set of self numbers in a given base <math>b</math> is infinite and has a positive asymptotic density: when <math>b</math> is odd, this density is 1/2.<ref name=CS385>Sándor & Crstici (2004) p.385</ref>
Self numbers in specific basesEdit
For base 2 self numbers, see Template:Oeis. (written in base 10)
The first few base 10 self numbers are:
- 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, 97, 108, 110, 121, 132, 143, 154, 165, 176, 187, 198, 209, 211, 222, 233, 244, 255, 266, 277, 288, 299, 310, 312, 323, 334, 345, 356, 367, 378, 389, 400, 411, 413, 424, 435, 446, 457, 468, 479, 490, ... (sequence A003052 in the OEIS)
Self primesEdit
A self prime is a self number that is prime.
The first few self primes in base 10 are
- 3, 5, 7, 31, 53, 97, 211, 233, 277, 367, 389, 457, 479, 547, 569, 613, 659, 727, 839, 883, 929, 1021, 1087, 1109, 1223, 1289, 1447, 1559, 1627, 1693, 1783, 1873, ... (sequence A006378 in the OEIS)
ReferencesEdit
- Kaprekar, D. R. The Mathematics of New Self-Numbers Devaiali (1963): 19 - 20.
- Template:Cite journal
- Template:Cite journal
- Template:Cite book
- {{#invoke:Template wrapper|{{#if:|list|wrap}}|_template=cite web
|_exclude=urlname, _debug, id |url = https://mathworld.wolfram.com/{{#if:SelfNumber%7CSelfNumber.html}} |title = Self Number |author = Weisstein, Eric W. |website = MathWorld |access-date = |ref = Template:SfnRef }}
Template:Prime number classes Template:Classes of natural numbers