Template:Short description Template:Distinguish Template:Redirect Template:Use dmy dates Template:Cs1 config Template:Chembox

Sodium nitrite is an inorganic compound with the chemical formula Template:Chem2. It is a white to slightly yellowish crystalline powder that is very soluble in water and is hygroscopic. From an industrial perspective, it is the most important nitrite salt. It is a precursor to a variety of organic compounds, such as pharmaceuticals, dyes, and pesticides, but it is probably best known as a food additive used in processed meats and (in some countries) in fish products.<ref name=Ullmann>Template:Cite book</ref>

UsesEdit

Industrial chemistryEdit

The main use of sodium nitrite is for the industrial production of organonitrogen compounds. It is a reagent for conversion of amines into diazo compounds, which are key precursors to many dyes, such as diazo dyes. Nitroso compounds are produced from nitrites. These are used in the rubber industry.<ref name=Ullmann/>

It is used in a variety of metallurgical applications, for phosphatizing and detinning.<ref name=Ullmann/>

Sodium nitrite is an effective corrosion inhibitor and is used as an additive in industrial greases,<ref>Template:Cite journal</ref> as an aqueous solution in closed loop cooling systems, and in a molten state as a heat transfer medium.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

Food additive and preservativeEdit

Sodium nitrite is used to speed up the curing of meat,<ref name=Wilson>Template:Cite news</ref> inhibit the germination of Clostridium botulinum spores, and also impart an attractive pink color.<ref>Template:Cite journal</ref><ref name="FSAINitriteInMeat">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> Nitrite reacts with the meat myoglobin to cause color changes, first converting to nitrosomyoglobin (bright red), then, on heating, to nitrosohemochrome (a pink pigment).<ref>Template:Cite journal</ref>

Historically, salt has been used for the preservation of meat. The salt-preserved meat product was usually brownish-gray in color. When sodium nitrite is added with the salt, the meat develops a red, then pink color, which is associated with cured meats such as ham, bacon, hot dogs, and bologna.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

In the early 1900s, irregular curing was commonplace. This led to further research surrounding the use of sodium nitrite as an additive in food, standardizing the amount present in foods to minimize the amount needed while maximizing its food additive role.<ref name="Sindelar Human safety">Template:Cite journal</ref> Through this research, sodium nitrite has been found to give taste and color to the meat and inhibit lipid oxidation that leads to rancidity, with varying degrees of effectiveness for controlling growth of disease-causing microorganisms.<ref name="Sindelar Human safety" /> The ability of sodium nitrite to address the above-mentioned issues has led to production of meat with extended storage life and has improved desirable color and taste. According to scientists working for the meat industry,<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> nitrite has improved food safety.<ref name="Sindelar Human safety" /> This view is disputed in the light of the possible carcinogenic effects caused by adding nitrites to meat.<ref name=Wilson/>

Nitrite has the E number E250. Potassium nitrite (E249) is used in the same way. It is approved for usage in the European Union,<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref><ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> USA,<ref>US Food and Drug Administration: {{#invoke:citation/CS1|citation |CitationClass=web }}</ref> and Australia and New Zealand.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

In meat processing, sodium nitrite is never used in a pure state but always mixed with common salt. This mixture is known as nitrited salt, curing salt or nitrited curing salt. In Europe, nitrited curing salt contains between 99.1% and 99.5% common salt and between 0.5% and 0.9% nitrite. In the US, nitrited curing salt is dosed at 6.25%<ref name="Gisslen2006">Template:Cite book</ref> and must be remixed with salt before use.<ref>Template:Cite book</ref>

Color and tasteEdit

The appearance and taste of meat is an important component of consumer acceptance.<ref name="Sindelar Human safety" /> Sodium nitrite is responsible for the desirable red color (or shaded pink) of meat.<ref name="Sindelar Human safety" /> Very little nitrite is needed to induce this change.<ref name="Sindelar Human safety" /> It has been reported that as little as 2 to 14 parts per million (ppm) is needed to induce this desirable color change.<ref name="Sindelar One" /> However, to extend the lifespan of this color change, significantly higher levels are needed.<ref name="Sindelar One" /> The mechanism responsible for this color change is the formation of nitrosylating agents by nitrite, which has the ability to transfer nitric oxide that subsequently reacts with myoglobin to produce the cured meat color.<ref name="Sindelar One" /> The unique taste associated with cured meat is also affected by the addition of sodium nitrite.<ref name="Sindelar Human safety" /> However, the mechanism underlying this change in taste is still not fully understood.<ref name="Sindelar One" />

Inhibition of microbial pathogensEdit

In conjunction with salt and pH levels, sodium nitrite reduces the ability of Clostridium botulinum spores to grow to the point of producing toxin.<ref name="FSAINitriteInMeat" /><ref>Template:Cite journal</ref> Some dry-cured meat products are manufactured without nitrites. For example, Parma ham, which has been produced without nitrite since 1993, was reported in 2018 to have caused no cases of botulism. This is because the interior of the muscle is sterile and the surface is exposed to oxygen.<ref name=Wilson/> Other manufacture processes do not assure these conditions, and reduction of nitrite results in toxin production.<ref>Template:Cite journal</ref>

Sodium nitrite has shown varying degrees of effectiveness for controlling growth of other spoilage or disease causing microorganisms.<ref name="Sindelar Human safety" /> Although the inhibitory mechanisms are not well known, its effectiveness depends on several factors including residual nitrite level, pH, salt concentration, reductants present and iron content.<ref name="Sindelar One">Template:Cite journal</ref> The type of bacteria also affects sodium nitrite's effectiveness.<ref name="Sindelar One"/> It is generally agreed that sodium nitrite is not effective for controlling Gram-negative enteric pathogens such as Salmonella and Escherichia coli.<ref name="Sindelar One" />

Other food additives (such as lactate and sorbate) provide similar protection against bacteria, but do not provide the desired pink color.<ref>Template:Cite journal</ref><ref>Template:Cite journal</ref><ref>Template:Cite journal</ref><ref>Template:Cite journal</ref>

Inhibition of lipid peroxidationEdit

Sodium nitrite is also able to effectively delay the development of oxidative rancidity.<ref name="Sindelar One" /> Lipid peroxidation is considered to be a major reason for the deterioration of quality of meat products (rancidity and unappetizing flavors).<ref name="Sindelar One" /> Sodium nitrite acts as an antioxidant in a mechanism similar to the one responsible for the coloring effect.<ref name="Sindelar One" /> Nitrite reacts with heme proteins and metal ions, neutralizing free radicals by nitric oxide (one of its byproducts).<ref name="Sindelar One" /> Neutralization of these free radicals terminates the cycle of lipid oxidation that leads to rancidity.<ref name="Sindelar One" />

MedicationEdit

Template:Main other <templatestyles src="Infobox drug/styles.css"/> {{#invoke:Infobox|infobox}}Template:Template other{{#invoke:TemplatePar |check |template=Template:Infobox_drug |all= |opt= pronounce= pronounce_ref= pronounce_comment= ATC_prefix= ATC_suffix= ATC_supplemental= ATCvet= biosimilars= CAS_number_Ref= CAS_number= CAS_supplemental= ChEBI= ChEBI_Ref= ChEMBL_Ref= ChEMBL= ChemSpiderID= ChemSpiderID_Ref= chirality= class= container_only= DailyMedID= data_page= DrugBank_Ref= DrugBank= Drugs.com= duration_of_action= INN= INN_EMA= IUPAC_name= IUPHAR_ligand= KEGG_Ref= KEGG= MedlinePlus= NIAID_ChemDB= PDB_ligand= PubChemSubstance= PubChem= StdInChIKey_Ref= StdInChIKey= StdInChI_Ref= StdInChI_comment= StdInChI= UNII_Ref= UNII= DTXSID= Verifiedfields= Watchedfields= addiction_liability= alt2= altL= altR= alt= bioavailability= boiling_high= boiling_notes= boiling_point= captionLR= caption= caption2= charge= chemical_formula= chemical_formula_ref= chemical_formula_comment= class1= class2= class3= class4= class5= class6= component1= component2= component3= component4= component5= component6= density= density_notes= dependency_liability= drug_name= elimination_half-life= engvar= excretion= image2= imageL= imageR= image= image_class= image_class2= image_classL= image_classR= Jmol= legal_AU= legal_BR= legal_CA= legal_DE= legal_EU= legal_NZ= legal_UK= legal_UN= legal_US= legal_AU_comment= legal_BR_comment= legal_CA_comment= legal_DE_comment= legal_UK_comment= legal_NZ_comment= legal_US_comment= legal_UN_comment= legal_EU_comment= legal_status= licence_CA= licence_EU= licence_US= license_CA= license_EU= license_US= mab_type= melting_high= melting_notes= melting_point= metabolism= metabolites= molecular_weight= molecular_weight_round= molecular_weight_unit= molecular_weight_ref= molecular_weight_comment= onset= pregnancy_AU= pregnancy_AU_comment= pregnancy_category= protein_bound= routes_of_administration= SMILES= smiles= solubility= sol_units= source= specific_rotation= synonyms= target= tradename= type= vaccine_type= verifiedrevid= width2= widthL= widthR= width= AAN= BAN= JAN= USAN= source_tissues= target_tissues= receptors= agonists= antagonists= precursor= biosynthesis= gt_target_gene= gt_vector= gt_nucleic_acid_type= gt_editing_method= gt_delivery_method= sec_combustion= Ac=Ag=Al=Am=Ar=As=At=Au=B=Ba=Be=Bh=Bi=Bk=Br=C=Ca=Cd=Ce=Cf=Cl=Cm=Cn=Co=Cr=Cs=Cu= D=Db=Ds=Dy=Er=Es=Eu=F=Fe=Fl=Fm=Fr=Ga=Gd=Ge=H=He=Hf=Hg=Ho=Hs=I=In=Ir=K=Kr=La=Li=Lr=Lu=Lv= Mc=Md=Mg=Mn=Mo=Mt=N=Na=Nb=Nd=Ne=Nh=Ni=No=Np=O=Og=Os=P=Pa=Pb=Pd=Pm=Po=Pr=Pt=Pu=Ra=Rb=Re=Rf=Rg=Rh=Rn=Ru=S=Sb=Sc=Se=Sg=Si=Sm=Sn=Sr=Ta=Tb=Tc=Te=Th=Ti=Tl=Tm=Ts=U=V=W=Xe=Y=Yb=Zn=Zr= index_label= index2_label= index_comment= index2_comment= CAS_number2= CAS_supplemental2= ATC_prefix2= ATC_suffix2= ATC_supplemental2= PubChem2= PubChemSubstance2= IUPHAR_ligand2= DrugBank2= ChemSpiderID2= UNII2= KEGG2= ChEBI2= ChEMBL2= PDB_ligand2= NIAID_ChemDB2= SMILES2= smiles2= StdInChI2= StdInChIKey2= CAS_number2_Ref= ChEBI2_Ref= ChEMBL2_Ref= ChemSpiderID2_Ref= DrugBank2_Ref= KEGG2_Ref= StdInChI2_Ref= StdInChIKey2_Ref= UNII2_Ref= DTXSID2= QID= QID2=PLLR= pregnancy_US= pregnancy_US_comment= |cat=Pages using infobox drug with unknown parameters |format=0|errNS=0

|preview=

@@@ (See parameter list). This message only shows in Preview, it will not show after you do Template:Button.

}}{{Infobox drug/maintenance categoriesTemplate:Yesno | drug_name = | INN = | _drugtype =

| _has_physiological_data= | _has_gene_therapy=

| vaccine_type= | mab_type= | _number_of_combo_chemicals={{#invoke:ParameterCount |main |component1 |component2 |component3 |component4|component5|component6 }} | _vaccine_data= | _mab_data= | _mab_vaccine_data= | _mab_other_data=12N(=O)[O-].[Na+]1S/HNO2.Na/c2-1-3;/h(H,2,3);/q;+1/p-1LPXPTNMVRIOKMN-UHFFFAOYSA-M | _combo_data= | _physiological_data= | _clinical_data=Template:Drugs.com Exempt<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>V03 | _legal_data=<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>S4Rx-only

| _other_data=

| _image_0_or_2 = Natriumnitrit.png | _image_LR =

| _datapage = Sodium nitrite (data page) | _vaccine_target={{#ifeq: | vaccine | | _type_not_vaccine }} | _legal_all=S4Rx-only | _ATC_prefix_supplemental=V03 | _has_EMA_link = | CAS_number=7632-00-0 | PubChem=24269 | ChemSpiderID=22689 | ChEBI= | ChEMBL= | DrugBank=DB09112 | KEGG=D05865 | _hasInChI_or_Key={{#if:1S/HNO2.Na/c2-1-3;/h(H,2,3);/q;+1/p-1LPXPTNMVRIOKMN-UHFFFAOYSA-M |yes}} | UNII=M0KG633D4F | _hasJmol02 = |_hasMultipleCASnumbers = |_hasMultiplePubChemCIDs = |_hasMultipleChEBIs =

| _countSecondIDs={{#invoke:ParameterCount |main |CAS_number2 |ATC_prefix2 |PubChem2 |PubChemStructure2 |IUPHAR_ligand2 |DrugBank2 |ChemSpiderID2 |UNII2 |KEGG2 |ChEBI2 |ChEMBL2 |PDB_ligand2 |NIAID_ChemDB2 |SMILES2 |smiles2 |StdInChI2 |StdInChIKey2 |DTXCID2}} | _countIndexlabels={{#invoke:ParameterCount |main |index_label |index2_label}} | _trackListSortletter= |QID = |QID2 = |Verifiedfields= |Watchedfields= |verifiedrevid=}} Sodium nitrite is used as a medication together with sodium thiosulfate to treat cyanide poisoning.<ref name=WHO2008/> It is recommended only in severe cases of cyanide poisoning and has largely been replaced by use of hydroxocobalamin,<ref name="UK2017">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> a form of vitamin B12, but given in much higher doses than needed nutritionally.<ref>Template:Cite journal</ref> In those who have both cyanide poisoning and carbon monoxide poisoning sodium thiosulfate by itself is usually recommended if the facility does not have sufficient hydroxycobalamin.<ref>Template:Cite book</ref><ref>Template:Cite book</ref> It is given by slow injection into a vein.<ref name=WHO2008>Template:Cite book</ref>

Template:Chem2 side effects are chiefly related to creation of methemoglobinemia and vasodilation. Side effects can include low blood pressure, headache, shortness of breath, loss of consciousness, and vomiting.<ref name=WHO2008/> Greater care should be taken in people with underlying heart disease.<ref name=WHO2008/> The patient's levels of methemoglobin should be regularly checked during treatment.<ref name=WHO2008/> While not well studied during pregnancy, there is some evidence of potential harm to the baby.<ref name=Pro2017/> Sodium nitrite works by creating methemoglobin, where the iron atom at the center of the heme group is in the oxidized ferric (Template:Chem2) state, which binds with cyanide with greater affinity than its binding to the cytochrome C oxidase, and thus removes it from blocking the metabolic function of mitochondria.<ref name=Pro2017>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

Sodium nitrite came into medical use in the 1920s and 1930s.<ref>Template:Cite book</ref><ref>Template:Cite book</ref> It is on the World Health Organization's List of Essential Medicines.<ref name="WHO21st">Template:Cite book</ref>

SuicideEdit

Several academic publications in 2020 and 2021 have discussed the toxicity of sodium nitrite, and an apparent recent increase in suicides using sodium nitrite which had been ordered online.<ref>Template:Harvp; Template:Harvp; Template:Harvp; Template:Harvp; Template:Harvp; Template:Harvp; Template:Harvp; Template:Harvp; Template:Harvp; Template:Harvp</ref> The usage of sodium nitrite as a suicide method has been heavily discussed on suicide forums, primarily Sanctioned Suicide.<ref name="Where the Despairing Log On, and Learn Ways to Die">Template:Cite news</ref>

Sodium nitrite was also the focal-point of the McCarthy et al. v Amazon lawsuit alleging that Amazon knowingly assisted in the deaths of healthy children by selling them "suicide kits" as Amazon's "frequently bought together" feature recommended buying sodium nitrite, an antiemetic, and a suicide instruction book together.<ref>Template:Cite news</ref> This lawsuit was dismissed in June 2023.<ref>Template:Cite news</ref> The online marketplace eBay has globally prohibited the sale of sodium nitrite since 2019.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> A Canadian distributor of sodium nitrite was prosecuted in 2023 for assisting suicide.<ref>Template:Cite news</ref><ref>Template:Cite news</ref> That same year, legislation was introduced in the United States with the aim of deeming sodium nitrite products with a sodium nitrite concentration of greater than 10% by volume to be banned consumer products under the Consumer Product Safety Act.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

In cases of suspected suicide involving sodium nitrite, it is critical that responding individuals administer immediate intravenous methylene blue.<ref>Template:Cite journal</ref><ref name=":0">Template:Cite journal</ref><ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> Methylene blue is the antidote to the methemoglobinemia caused by intentional ingestion of sodium nitrite as a suicide agent.<ref>Template:Cite journal</ref>

ToxicityEdit

Sodium nitrite is toxic.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> The LD50 in rats is 180 mg/kg and in humans LDLo is 71 mg/kg.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> The mechanism by which sodium nitrite causes death is methemoglobinemia.<ref>Template:Cite journal</ref> The oftentimes severe methemoglobinemia found in sodium nitrite poisoning cases results in systemic hypoxia, metabolic acidosis, and cyanosis.<ref>Template:Cite journal</ref> The reported<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> signs of sodium nitrite poisoning are as follows:

<templatestyles src="Template:Blockquote/styles.css" />

Symptoms of [nitrite] poisoning can vary depending on the amount and duration of the exposure. Those with very mild methemoglobinemia might not have any symptoms at all, or might appear a little pale and feel tired. Moderate-to-severe poisoning is associated with cyanosis (blueness of the skin), confusion, loss of consciousness, seizures, abnormal heart rhythms, and death.{{#if:|{{#if:|}}

}}

{{#invoke:Check for unknown parameters|check|unknown=Template:Main other|preview=Page using Template:Blockquote with unknown parameter "_VALUE_"|ignoreblank=y| 1 | 2 | 3 | 4 | 5 | author | by | char | character | cite | class | content | multiline | personquoted | publication | quote | quotesource | quotetext | sign | source | style | text | title | ts }}

With prompt action, sodium nitrite poisoning is reversible using an antidote, methylene blue.<ref name=":0" /> It has been reported<ref>Template:Cite journal</ref> that sodium nitrite poisoning can also be detected post-mortem:

<templatestyles src="Template:Blockquote/styles.css" />

Postmortem detection of [methemoglobinemia] is typically established via screening techniques such as scene evidence suggesting fatal consumption of a toxic salt in addition to the characteristic grey-purple lividity observed upon the body. The diagnosis can be established via postmortem blood testing demonstrating elevated methemoglobin saturation. Additionally, we have confirmed that postmortem MRI in cases of [methemoglobinemia] demonstrates a T1-bright (hyperintense) signal of the blood; both within intracardiac blood on chest MRIs and postmortem blood samples in tubes.{{#if:|{{#if:|}}

}}

{{#invoke:Check for unknown parameters|check|unknown=Template:Main other|preview=Page using Template:Blockquote with unknown parameter "_VALUE_"|ignoreblank=y| 1 | 2 | 3 | 4 | 5 | author | by | char | character | cite | class | content | multiline | personquoted | publication | quote | quotesource | quotetext | sign | source | style | text | title | ts }}

Death by sodium nitrite ingestion can happen at lower doses than the previously known LDLo.<ref>Template:Cite journal</ref><ref>Template:Cite journal</ref> Sodium nitrite has been used for homicide<ref>Template:Cite news</ref><ref>Template:Cite news</ref> and suicide.<ref>Template:Cite news</ref><ref>Template:Cite news</ref> To prevent accidental intoxication, sodium nitrite (blended with salt) sold as a food additive in the US is dyed bright pink to avoid mistaking it for plain salt or sugar. In other countries, nitrited curing salt is not dyed but is strictly regulated.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

Occurrence in vegetablesEdit

Nitrites do not occur naturally in vegetables in significant quantities,<ref name="Dennis & Wilson 2003 Nitrates and Nitrites">Template:Cite book</ref> but deliberate fermentation of celery juice, for instance, with a naturally high level of nitrates, can produce nitrite levels sufficient for commercial meat curing.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> Boiling vegetables does not affect nitrite levels.<ref name="Leszczyńska">Template:Cite journal</ref>

The presence of nitrite in animal tissue is a consequence of metabolism of nitric oxide, an important neurotransmitter.<ref>Template:Cite journal</ref> Nitric oxide can be created de novo from nitric oxide synthase utilizing arginine or from ingested nitrite.<ref>Template:Cite journal</ref>

PigsEdit

Due to sodium nitrite's high level of toxicity to swine (Sus scrofa) it is now being developed in Australia to control feral pigs and wild boar.<ref>Template:Cite conference</ref><ref>Template:Cite patent</ref> The sodium nitrite induces methemoglobinemia in swine, i.e. it reduces the amount of oxygen that is released from hemoglobin, so the animal will feel faint and pass out, and then die in a humane manner after first being rendered unconscious.<ref>Template:Cite book</ref> The Texas Parks and Wildlife Department operates a research facility at Kerr Wildlife Management Area, where they examine feral pig feeding preferences and bait tactics to administer sodium nitrite.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}Template:Cbignore</ref>

CancerEdit

Carcinogenicity is the ability or tendency of a chemical to induce tumors, increase their incidence or malignancy, or shorten the time of tumor occurrence.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

Adding nitrites to meat has been shown to generate known carcinogens such as nitrosamines; the World Health Organization (WHO) advises that Template:Convert of "processed meats" a day would raise the risk of getting bowel cancer by 18% over a lifetime, and eating larger amounts raises the risk more. The World Health Organization's review of more than 400 studies concluded, in 2015, that there was sufficient evidence that "processed meats" caused cancer, particularly colon cancer;<ref name="Wilson" /> the WHO's International Agency for Research on Cancer (IARC) classified "processed meats" as carcinogenic to humans (Group 1); "processed meat" meaning meat that has been transformed through salting, curing, fermentation, smoking, or other processes to enhance flavour or improve preservation.).<ref name=Wilson/><ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

Nitrosamines can be formed during the curing process used to preserve meats, when sodium nitrite-treated meat is cooked, and also from the reaction of nitrite with secondary amines under acidic conditions (such as occurs in the human stomach). Dietary sources of nitrosamines include US cured meats preserved with sodium nitrite as well as the dried salted fish eaten in Japan. In the 1920s, a significant change in US meat curing practices resulted in a 69% decrease in average nitrite content. This event preceded the beginning of a dramatic decline in gastric cancer mortality.<ref>Template:Cite journal</ref> Around 1970, it was found that ascorbic acid (vitamin C), an antioxidant, inhibits nitrosamine formation.<ref>Template:Cite journal</ref> Consequently, the addition of at least 550 ppm of ascorbic acid is required in meats manufactured in the United States. Manufacturers sometimes instead use erythorbic acid, a cheaper but equally effective isomer of ascorbic acid. Additionally, manufacturers may include α-tocopherol (vitamin E) to further inhibit nitrosamine production. α-Tocopherol, ascorbic acid, and erythorbic acid all inhibit nitrosamine production by their oxidation-reduction properties. Ascorbic acid, for example, forms dehydroascorbic acid when oxidized, which when in the presence of nitrosonium, a potent nitrosating agent formed from sodium nitrite, reduces the nitrosonium into nitric oxide.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref> The nitrosonium ion formed in acidic nitrite solutions is commonly<ref>Template:Cite journal</ref><ref>Template:Cite bookTemplate:Page needed</ref> mislabeled nitrous anhydride, an unstable nitrogen oxide that cannot exist in vitro.<ref>Template:Cite book</ref>

Ingesting nitrite under conditions that result in endogenous nitrosation has been classified as "probably carcinogenic to humans" by International Agency for Research on Cancer (IARC).<ref name="monographs.iarc.fr">{{#invoke:citation/CS1|citation |CitationClass=web }}</ref><ref name="ReferenceA">Template:Cite book</ref>

Sodium nitrite consumption has also been linked to the triggering of migraines in individuals who already experience them.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>

One study has found a correlation between highly frequent ingestion of meats cured with pink salt and the COPD form of lung disease.<ref>Template:Cite news</ref><ref>Template:Cite journal</ref> The study's researchers suggest that the high amount of nitrites in the meats was responsible; however, the team did not prove the nitrite theory. Additionally, the study does not prove that nitrites or cured meat caused higher rates of COPD, merely a link. The researchers did adjust for many of COPD's risk factors, but they commented they cannot rule out all possible unmeasurable causes or risks for COPD.<ref>Template:Cite news</ref><ref>Template:Cite journal</ref>

ProductionEdit

Industrial production of sodium nitrite follows one of two processes, the reduction of nitrate salts, or the oxidation of lower nitrogen oxides.

One method uses molten sodium nitrate as the salt, and lead which is oxidized, while a more modern method uses scrap iron filings to reduce the nitrate.<ref name=Ullmann/><ref>Template:Cite journal</ref>

Template:Chem2
Template:Chem2

A more commonly used method involves the general reaction of nitrogen oxides in alkaline aqueous solution, with the addition of a catalyst. The exact conditions depend on which nitrogen oxides are used, and what the oxidant is, as the conditions need to be carefully controlled to avoid over oxidation of the nitrogen atom.<ref name="Ullmann"/>

Template:Chem2
Template:Chem2

Sodium nitrite has also been produced by reduction of nitrate salts by exposure to heat, light, ionizing radiation, metals, hydrogen, and electrolytic reduction.<ref>Template:Cite book</ref>

Template:Chem2

Chemical reactionsEdit

{{#invoke:Labelled list hatnote|labelledList|Main article|Main articles|Main page|Main pages}} In the laboratory, sodium nitrite can be used to destroy excess sodium azide.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref><ref>Template:Cite book</ref>

Template:Chem2

Above 330 °C sodium nitrite decomposes (in air) to sodium oxide, nitric oxide and nitrogen dioxide.<ref>Template:Cite journal</ref>

Template:Chem2

Sodium nitrite can also be used in the production of nitrous acid:

Template:Chem2

The nitrous acid then, under normal conditions, decomposes:

Template:Chem2

The resulting nitrogen dioxide hydrolyzes to a mixture of nitric and nitrous acids:

Template:Chem2

Isotope labelling 15NEdit

File:15n isotope.jpg
15N isotope enriched NaNO2

In organic synthesis isotope enriched sodium nitrite-15N can be used instead of normal sodium nitrite as their reactivity is nearly identical in most reactions.

The obtained products carry isotope 15N and hence nitrogen NMR can be efficiently carried out.<ref>Template:Cite journal</ref>

ReferencesEdit

Template:Reflist

SourcesEdit

Template:Refbegin

Template:Refend

Further readingEdit

Template:Refbegin

Template:Refend

External linksEdit

  • {{#invoke:citation/CS1|citation

|CitationClass=web }}

  • {{#invoke:citation/CS1|citation

|CitationClass=web }}

Template:Antidotes Template:Sodium compounds Template:Nitrites Template:Portal bar