Stooge sort
Template:Short description Template:Use dmy dates Template:Infobox Algorithm Stooge sort is a recursive sorting algorithm. It is notable for its exceptionally poor time complexity of <math>O(n^{\log 3/\log 1.5})</math> = <math>O(n^{2.7095...})</math> The algorithm's running time is thus slower compared to reasonable sorting algorithms, and is slower than bubble sort, a canonical example of a fairly inefficient sort. It is, however, more efficient than Slowsort. The name comes from The Three Stooges.<ref>{{#invoke:citation/CS1|citation |CitationClass=web }}</ref>
The algorithm is defined as follows:
- If the value at the start is larger than the value at the end, swap them.
- If there are three or more elements in the list, then:
- Stooge sort the initial 2/3 of the list
- Stooge sort the final 2/3 of the list
- Stooge sort the initial 2/3 of the list again
It is important to get the integer sort size used in the recursive calls by rounding the 2/3 upwards, e.g. rounding 2/3 of 5 should give 4 rather than 3, as otherwise the sort can fail on certain data.
ImplementationEdit
PseudocodeEdit
<syntaxhighlight lang="javascript">
function stoogesort(array L, i = 0, j = length(L)-1){ if L[i] > L[j] then // If the leftmost element is larger than the rightmost element swap(L[i],L[j]) // Then swap them if (j - i + 1) > 2 then // If there are at least 3 elements in the array t = floor((j - i + 1) / 3) stoogesort(L, i, j-t) // Sort the first 2/3 of the array stoogesort(L, i+t, j) // Sort the last 2/3 of the array stoogesort(L, i, j-t) // Sort the first 2/3 of the array again return L }
</syntaxhighlight>
HaskellEdit
<syntaxhighlight lang="haskell"> -- Not the best but equal to above
stoogesort :: (Ord a) => [a] -> [a] stoogesort [] = [] stoogesort src = innerStoogesort src 0 ((length src) - 1)
innerStoogesort :: (Ord a) => [a] -> Int -> Int -> [a] innerStoogesort src i j
| (j - i + 1) > 2 = src' | otherwise = src' where src' = swap src i j -- need every call t = floor (fromIntegral (j - i + 1) / 3.0) src = innerStoogesort src' i (j - t) src' = innerStoogesort src (i + t) j src' = innerStoogesort src i (j - t)
swap :: (Ord a) => [a] -> Int -> Int -> [a] swap src i j
| a > b = replaceAt (replaceAt src j a) i b | otherwise = src where a = src !! i b = src !! j
replaceAt :: [a] -> Int -> a -> [a] replaceAt (x:xs) index value
| index == 0 = value : xs | otherwise = x : replaceAt xs (index - 1) value
</syntaxhighlight>
ReferencesEdit
<references />
SourcesEdit
- {{#invoke:citation/CS1|citation
|CitationClass=web }}