Truncated power function
In mathematics, the truncated power function<ref>Template:Cite book</ref> with exponent <math>n</math> is defined as
- <math>x_+^n =
\begin{cases} x^n &:\ x > 0 \\ 0 &:\ x \le 0. \end{cases} </math>
In particular,
- <math>x_+ =
\begin{cases} x &:\ x > 0 \\ 0 &:\ x \le 0. \end{cases} </math> and interpret the exponent as conventional power.
RelationsEdit
- Truncated power functions can be used for construction of B-splines.
- <math>x \mapsto x_+^0</math> is the Heaviside function.
- <math>\chi_{[a,b)}(x) = (b-x)_+^0 - (a-x)_+^0</math> where <math>\chi</math> is the indicator function.
- Truncated power functions are refinable.
See alsoEdit
External linksEdit
ReferencesEdit
<references/>