Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Advanced Encryption Standard
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Standard for the encryption of electronic data}} {{Infobox block cipher | name = Advanced Encryption Standard{{break}}(Rijndael) | image = [[File:AES (Rijndael) Round Function.png|250px]] | caption = Visualization of the AES round function | designers = [[Joan Daemen]], [[Vincent Rijmen]] | publish date = 1998 | derived from = [[Square (cipher)|Square]] | derived to = [[Anubis (cipher)|Anubis]], [[Grand Cru (cipher)|Grand Cru]], [[Kalyna (cipher)|Kalyna]] | related to = | certification = [[Advanced Encryption Standard process|AES]] winner, [[CRYPTREC]], [[NESSIE]], [[National Security Agency|NSA]] | key size = 128, 192 or 256 bits<ref name="keysize" group="note">Key sizes of 128, 160, 192, 224, and 256 bits are supported by the Rijndael algorithm, but only the 128, 192, and 256-bit key sizes are specified in the AES standard.</ref> | block size = 128 bits<ref name="blocksize" group="note">Block sizes of 128, 160, 192, 224, and 256 bits are supported by the Rijndael algorithm for each key size, but only the 128-bit block size is specified in the AES standard.</ref> | structure = [[Substitution–permutation network]] | rounds = 10, 12 or 14 (depending on key size) | cryptanalysis = Attacks have been published that are computationally faster than a full [[brute-force attack]], though none as of 2023 are computationally feasible.<ref name="aesbc">{{cite web |url=http://research.microsoft.com/en-us/projects/cryptanalysis/aesbc.pdf |archive-url=https://web.archive.org/web/20160306104007/http://research.microsoft.com/en-us/projects/cryptanalysis/aesbc.pdf |archive-date=March 6, 2016 |title=Biclique Cryptanalysis of the Full AES |access-date=May 1, 2019 |url-status=dead |df=mdy-all}}</ref> For AES-128, the key can be recovered with a [[computational complexity]] of 2<sup>126.1</sup> using the [[biclique attack]]. For biclique attacks on AES-192 and AES-256, the computational complexities of 2<sup>189.7</sup> and 2<sup>254.4</sup> respectively apply. [[Related-key attack]]s can break AES-256 and AES-192 with complexities 2<sup>99.5</sup> and 2<sup>176</sup> in both time and data, respectively.<ref name = relkey>Alex Biryukov and Dmitry Khovratovich, ''Related-key Cryptanalysis of the Full AES-192 and AES-256'', {{cite web |url=https://eprint.iacr.org/2009/317 |title=Related-key Cryptanalysis of the Full AES-192 and AES-256 |access-date=2010-02-16 |url-status=live |archive-url=https://web.archive.org/web/20090928014006/http://eprint.iacr.org/2009/317 |archive-date=2009-09-28 |at=Table 1}}</ref> Another attack was blogged<ref name="Bruce Schneier">{{cite web |url=http://www.schneier.com/blog/archives/2009/07/another_new_aes.html |title=Another New AES Attack |author=Bruce Schneier |date=2009-07-30 |work=Schneier on Security, A blog covering security and security technology |access-date=2010-03-11 |url-status=live |archive-url=https://web.archive.org/web/20091005183132/http://www.schneier.com/blog/archives/2009/07/another_new_aes.html |archive-date=2009-10-05}}</ref> and released as a [[preprint]]<ref>{{cite web |url=https://eprint.iacr.org/2009/374 |title=Key Recovery Attacks of Practical Complexity on AES Variants With Up To 10 Rounds |author=Alex Biryukov |author2=Orr Dunkelman |author3=Nathan Keller |author4=Dmitry Khovratovich |author5=Adi Shamir |date=2009-08-19 |access-date=2010-03-11 |archive-url=https://web.archive.org/web/20100128050656/http://eprint.iacr.org/2009/374 |archive-date=28 January 2010 |url-status=live}}</ref> in 2009. This attack is against AES-256 that uses only two related keys and 2<sup>39</sup> time to recover the complete 256-bit key of a 9-round version, or 2<sup>45</sup> time for a 10-round version with a stronger type of related subkey attack, or 2<sup>70</sup> time for an 11-round version. }} The '''Advanced Encryption Standard''' ('''AES'''), also known by its original name '''Rijndael''' ({{IPA|nl|ˈrɛindaːl}}),<ref name="Rijndael-ammended.pdf" /> is a specification for the [[encryption]] of electronic data established by the U.S. [[National Institute of Standards and Technology]] (NIST) in 2001.<ref name="fips-197">{{cite web |url=https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf |title=Announcing the ADVANCED ENCRYPTION STANDARD (AES) |publisher=United States National Institute of Standards and Technology (NIST) |work=Federal Information Processing Standards Publication 197 |date=November 26, 2001 |access-date=August 26, 2024 |url-status=live |archive-url=https://web.archive.org/web/20240823165748/https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf |archive-date=August 23, 2024}}</ref> AES is a variant of the Rijndael [[block cipher]]<ref name="Rijndael-ammended.pdf">{{cite web |url=http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf#page=1 |title=AES Proposal: Rijndael |last1=Daemen |first1=Joan |last2=Rijmen |first2=Vincent |date=March 9, 2003 |publisher=National Institute of Standards and Technology |page=1 |access-date=21 February 2013 |url-status=live |archive-url=https://web.archive.org/web/20130305143117/http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf#page=1 |archive-date=5 March 2013}}</ref> developed by two [[Belgium|Belgian]] cryptographers, [[Joan Daemen]] and [[Vincent Rijmen]], who submitted a proposal<ref name="Rijndaelv2">{{cite web |url=http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf |url-status=dead |archive-url=https://web.archive.org/web/20070203204845/https://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf |archive-date=February 3, 2007 |title=AES Proposal: Rijndael |author=Joan Daemen and Vincent Rijmen |date=September 3, 1999}}</ref> to NIST during the [[Advanced Encryption Standard process|AES selection process]].<ref>{{Cite news |title=U.S. Selects a New Encryption Technique |author=John Schwartz |newspaper=New York Times |date=October 3, 2000 |url=https://www.nytimes.com/2000/10/03/business/technology-us-selects-a-new-encryption-technique.html |url-status=live |archive-url=https://web.archive.org/web/20170328215407/http://www.nytimes.com/2000/10/03/business/technology-us-selects-a-new-encryption-technique.html |archive-date=March 28, 2017}}</ref> Rijndael is a family of ciphers with different [[key size|key]] and [[Block size (cryptography)|block size]]s. For AES, NIST selected three members of the Rijndael family, each with a block size of 128 bits, but three different key lengths: 128, 192 and 256 bits. AES has been adopted by the [[Federal government of the United States|U.S. government]]. It supersedes the [[Data Encryption Standard]] (DES),<ref>{{cite news |url=http://www.findarticles.com/p/articles/mi_m0IKZ/is_3_107?pnum=2&opg=90984479 |title=NIST reports measurable success of Advanced Encryption Standard |work=Journal of Research of the National Institute of Standards and Technology |first=Harold B. |last=Westlund |date=2002 |url-status=dead |archive-url=https://web.archive.org/web/20071103105501/http://findarticles.com/p/articles/mi_m0IKZ/is_3_107?pnum=2&opg=90984479 |archive-date=2007-11-03}}</ref> which was published in 1977. The algorithm described by AES is a [[symmetric-key algorithm]], meaning the same key is used for both encrypting and decrypting the data. In the United States, AES was announced by the NIST as U.S. [[Federal Information Processing Standard|FIPS]] PUB 197 (FIPS 197) on November 26, 2001.<ref name="fips-197" /> This announcement followed a five-year standardization process in which fifteen competing designs were presented and evaluated, before the Rijndael cipher was selected as the most suitable.<ref group="note">See [[Advanced Encryption Standard process]] for more details.</ref> AES is included in the [[International Organization for Standardization|ISO]]/[[International Electrotechnical Commission|IEC]] [[List of International Organization for Standardization standards, 18000-19999|18033-3]] standard. AES became effective as a U.S. federal government standard on May 26, 2002, after approval by U.S. [[United States Secretary of Commerce|Secretary of Commerce]] [[Donald Evans]]. AES is available in many different encryption packages, and is the first (and only) publicly accessible [[cipher]] approved by the U.S. [[National Security Agency]] (NSA) for [[Classified information|top secret]] information when used in an NSA approved cryptographic module.<ref group="note">See [[Advanced Encryption Standard#Security|Security of AES]] below.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)