Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Animal testing
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Use of animals in experiments}} {{Redirect|Animal research|other uses|Animal studies (disambiguation)|the journal|Animal Research (journal)}} {{See also|Vivisection}} {{Good article}} {{Pp-pc}} {{cs1 config|name-list-style=vanc}} {{Use dmy dates|date=November 2020}} {{Infobox| bodystyle = width:10em; font-size:85%; |aboabovestyle = background-color: #99BADD |subheader = |image1 = [[File:Wistar rat.jpg|200px]] |caption1 = A [[Wistar rat|Wistar laboratory rat]] |headerstyle = background-color: #99BADD |label2 = Description |data2 = Around 50–100 million [[vertebrate]] animals are used in experiments annually. |label3 = Early proponents |label4 = Modern proponents |label5 = Key texts |label6 = Subjects |data6 = Animal testing, science, medicine, animal welfare, animal rights, ethics |below = }} '''Animal testing''', also known as '''animal experimentation''', '''animal research''', and '''''in vivo'' testing''', is the use of [[non-human animals]], such as [[model organism]]s, in experiments that seek to control the variables that affect the [[behavior]] or [[biological system]] under study. This approach can be contrasted with field studies in which animals are observed in their natural environments or habitats. Experimental research with animals is usually conducted in universities, medical schools, pharmaceutical companies, defense establishments, and commercial facilities that provide animal-testing services to the industry.<ref name=selectcommintro>{{cite web|url=https://publications.parliament.uk/pa/ld200102/ldselect/ldanimal/150/15004.htm#a7 |title="Introduction", Select Committee on Animals in Scientific Procedures Report|publisher=UK Parliament|access-date=2012-07-13}}</ref> The focus of animal testing varies on a continuum from [[Basic research|pure research]], focusing on developing fundamental knowledge of an organism, to applied research, which may focus on answering some questions of great practical importance, such as finding a cure for a disease.<ref name="Ethical">{{cite journal |author1=Liguori, G.| display-authors=etal| year = 2017 | title = Ethical Issues in the Use of Animal Models for Tissue Engineering: Reflections on Legal Aspects, Moral Theory, 3Rs Strategies, and Harm-Benefit Analysis| journal = Tissue Engineering Part C: Methods | volume = 23 | issue = 12 | pages= 850–62 | doi=10.1089/ten.TEC.2017.0189| pmid=28756735| s2cid=206268293| url=https://pure.rug.nl/ws/files/51950145/ten.tec.2017.0189.pdf}}</ref> Examples of applied research include testing disease treatments, breeding, defense research, and [[Toxicology testing|toxicology]], including [[Testing cosmetics on animals|cosmetics testing]]. In education, animal testing is sometimes a component of [[biology]] or [[psychology]] courses.<ref>{{cite journal |last=Hajar |first=Rachel |date=2011 |title=Animal Testing and Medicine |journal=Heart Views |volume=12 |issue=1 |pages=42 |doi=10.4103/1995-705X.81548 |issn=1995-705X |pmc=3123518 |pmid=21731811 |doi-access=free }}</ref> Research using animal models has been central to most of the achievements of modern medicine.<ref name=RSM2015/><ref name=NRCIOM/><ref name="Nature2007"/> It has contributed to most of the basic knowledge in fields such as human [[physiology]] and [[biochemistry]], and has played significant roles in fields such as [[neuroscience]] and [[infectious disease]].<ref name=NRCIOMb/><ref name="HLAS2011"/> The results have included the near-[[Poliomyelitis eradication|eradication of polio]] and the development of [[organ transplantation]], and have benefited both humans and animals.<ref name=RSM2015/><ref name="IOM1991"/> From 1910 to 1927, [[Thomas Hunt Morgan]]'s work with the fruit fly ''[[Drosophila melanogaster]]'' identified [[chromosome]]s as the vector of inheritance for genes,<ref name="nobelprize.org"/><ref name="nobel2"/> and [[Eric Kandel]] wrote that Morgan's discoveries "helped transform biology into an experimental science".<ref name="Kandel1999"/> Research in model organisms led to further medical advances, such as the production of the [[diphtheria antitoxin]]<ref name="nobel3"/><ref name="Cannon2009"/> and the 1922 discovery of [[insulin]]<ref name="insulin"/> and its use in treating diabetes, which had previously meant death.<ref name="Thompson2009"/> Modern general anaesthetics such as [[halothane]] were also developed through studies on model organisms, and are necessary for modern, complex surgical operations.<ref name="raventos1956"/> Other 20th-century medical advances and treatments that relied on research performed in animals include [[organ transplant]] techniques,<ref name="carrel1912"/><ref name="williamson1926">Williamson C (1926) ''J. Urol.'' 16: p. 231</ref><ref name="woodruff1986"/><ref name="moore1964"/> the heart-lung machine,<ref name="gibbon1937"/> [[antibiotic]]s,<ref name="rawbw"/><ref name="fleming1929"/> and the [[whooping cough]] vaccine.<ref name="mrc1956"/> Animal testing is widely used to aid in research of human [[disease]] when [[human experimentation]] would be unfeasible or [[bioethics|unethical]].<ref>{{cite book|url=https://books.google.com/books?id=yTfNH3cScKAC<!--confirmed ISBN match; full text access-->|title=The Case for Animal Experimention: An Evolutionary and Ethical Perspective|last=Fox|first=Michael Allen|publisher=University of California Press|year=1986|isbn=978-0-520-05501-8|location=Berkeley and Los Angeles, California|oclc=11754940|via=Google Books}}</ref> This strategy is made possible by the [[common descent]] of all living organisms, and the conservation of [[Metabolic pathway|metabolic]] and [[developmental biology|developmental]] pathways and [[genetic material]] over the course of [[evolution]].<ref>{{cite journal |last1=Allmon |first1=Warren D. |last2=Ross |first2=Robert M. |title=Evolutionary remnants as widely accessible evidence for evolution: the structure of the argument for application to evolution education |journal=Evolution: Education and Outreach |date=December 2018 |volume=11 |issue=1 |pages=1 |doi=10.1186/s12052-017-0075-1 |s2cid=29281160 |doi-access=free }}</ref> Performing experiments in model organisms allows for better understanding the disease process without the added risk of harming an actual human. The species of the model organism is usually chosen so that it reacts to disease or its treatment in a way that resembles human [[physiology]] as needed. [[Biological activity]] in a model organism does not ensure an effect in humans, and care must be taken when generalizing from one organism to another.<ref>{{Cite book|title=Essential Developmental Biology|last=Slack|first=Jonathan M. W.|publisher=Wiley-Blackwell|year=2013|location=Oxford|oclc=785558800}}</ref>{{Page needed|date=October 2016}} However, many drugs, treatments and cures for human diseases are developed in part with the guidance of animal models.<ref name="zam">{{cite journal |last1=Chakraborty |first1=Chiranjib |last2=Hsu |first2=Chi |last3=Wen |first3=Zhi |last4=Lin |first4=Chang |last5=Agoramoorthy |first5=Govindasamy |title=Zebrafish: A Complete Animal Model for In Vivo Drug Discovery and Development |journal=Current Drug Metabolism |date=2009-02-01 |volume=10 |issue=2 |pages=116–124 |doi=10.2174/138920009787522197 |pmid=19275547 }}</ref><ref name=zrug>{{cite journal |last1=Kari |first1=G |last2=Rodeck |first2=U |last3=Dicker |first3=A P |title=Zebrafish: An Emerging Model System for Human Disease and Drug Discovery |journal=Clinical Pharmacology & Therapeutics |date=July 2007 |volume=82 |issue=1 |pages=70–80 |doi=10.1038/sj.clpt.6100223 |pmid=17495877 |s2cid=41443542 }}</ref> Treatments for animal diseases have also been developed, including for [[rabies]],<ref name="buck1904"/> [[anthrax]],<ref name="buck1904" /> [[glanders]],<ref name="buck1904" /> [[feline immunodeficiency virus]] (FIV),<ref name="pu2005"/> [[tuberculosis]],<ref name="buck1904" /> Texas cattle fever,<ref name="buck1904" /> [[classical swine fever]] (hog cholera),<ref name="buck1904" /> [[heartworm]], and other [[Parasitic disease|parasitic infections]].<ref name="dryden2005"/> Animal experimentation continues to be required for biomedical research,<ref name=bundle/> and is used with the aim of solving medical problems such as Alzheimer's disease,<ref name="geula1998"/> AIDS,<ref name="AIDS2005"/> multiple sclerosis,<ref name="jameson1994"/> spinal cord injury, many headaches,<ref name="lyuksyutova1984"/> and other conditions in which there is no useful ''[[in vitro]]'' model system available. The annual use of [[vertebrate]] animals—from [[zebrafish]] to non-human [[primates]]—was estimated at 192 million as of 2015.<ref name="Taylor Alvarez 2019 pp. 196–213">{{cite journal | last1=Taylor | first1=Katy | last2=Alvarez | first2=Laura Rego | title=An Estimate of the Number of Animals Used for Scientific Purposes Worldwide in 2015 | journal=Alternatives to Laboratory Animals | publisher=SAGE Publications | volume=47 | issue=5–6 | year=2019 | issn=0261-1929 | doi=10.1177/0261192919899853 | pages=196–213| pmid=32090616 | s2cid=211261775 | doi-access=free }}</ref> In the [[European Union]], vertebrate species represent 93% of animals used in research,<ref name="Taylor Alvarez 2019 pp. 196–213">{{cite journal | last1=Taylor | first1=Katy | last2=Alvarez | first2=Laura Rego | title=An Estimate of the Number of Animals Used for Scientific Purposes Worldwide in 2015 | journal=Alternatives to Laboratory Animals | publisher=SAGE Publications | volume=47 | issue=5–6 | year=2019 | issn=0261-1929 | doi=10.1177/0261192919899853 | pages=196–213| pmid=32090616 | s2cid=211261775 | doi-access=free }}</ref> and 11.5 million animals were used there in 2011.<ref name="eurlex13">{{CELEX|52013DC0859|text=Seventh Report on the Statistics on the Number of Animals used for Experimental and other Scientific Purposes in the Member States of the European Union}}</ref> The mouse (''[[House mouse|Mus musculus]]'') is associated with many important biological discoveries of the 20th and 21st centuries,<ref name="Hedrich"/> and by one estimate, the number of mice and rats used in the United States alone in 2001 was 80 million.<ref name=Carbone26>Carbone, Larry. (2004). What Animals Want: Expertise and Advocacy in Laboratory Animal Welfare Policy.</ref> In 2013, it was reported that mammals (mice and rats), fish, amphibians, and reptiles together accounted for over 85% of research animals.<ref name="EUstatistics2013">{{cite web|title=EU statistics show decline in animal research numbers|url=http://speakingofresearch.com/2013/12/12/eu-statistics-show-decline-in-animal-research-numbers/|publisher=Speaking of Research|year=2013|access-date=24 January 2016}}</ref> In 2022, a law was passed in the United States that eliminated the [[FDA]] requirement that all drugs be tested on animals.<ref>{{cite web|url=https://reason.com/2023/01/13/u-s-will-no-longer-require-animal-testing-for-new-drugs/|title=U.S. Will No Longer Require Animal Testing for New Drugs|date=13 January 2022}}</ref> Animal testing is regulated to varying degrees in different countries.<ref>{{cite journal |last1=Festing |first1=Simon |last2=Wilkinson |first2=Robin |date=June 2007 |title=The ethics of animal research. Talking Point on the use of animals in scientific research |journal=EMBO Reports |volume=8 |issue=6 |pages=526–530 |doi=10.1038/sj.embor.7400993 |issn=1469-221X |pmc=2002542 |pmid=17545991}}</ref> In some cases it is strictly controlled while others have more relaxed regulations. There are ongoing debates about the ethics and necessity of animal testing. Proponents argue that it has led to significant advancements in medicine and other fields while opponents raise concerns about [[Cruelty to animals|cruelty towards animals]] and question its effectiveness and reliability.<ref>{{cite journal |last1=Reddy |first1=Navya |last2=Lynch |first2=Barry |last3=Gujral |first3=Jaspreet |last4=Karnik |first4=Kavita |date=September 2023 |title=Regulatory landscape of alternatives to animal testing in food safety evaluations with a focus on the western world |url=https://pubmed.ncbi.nlm.nih.gov/37591329 |journal=Regulatory Toxicology and Pharmacology |volume=143 |pages=105470 |doi=10.1016/j.yrtph.2023.105470 |issn=1096-0295 |pmid=37591329|s2cid=260938742 }}</ref><ref>{{cite journal |last1=Petetta |first1=Francesca |last2=Ciccocioppo |first2=Roberto |date=November 2021 |title=Public perception of laboratory animal testing: Historical, philosophical, and ethical view |journal=Addiction Biology |volume=26 |issue=6 |pages=e12991 |doi=10.1111/adb.12991 |issn=1369-1600 |pmc=9252265 |pmid=33331099}}</ref> There are efforts underway to find alternatives to animal testing such as [[Computer simulation|computer simulation models]], [[Organ-on-a-chip|organs-on-chips technology]] that mimics human organs for lab tests,<ref>{{cite journal |last1=Low |first1=Lucie A. |last2=Mummery |first2=Christine |last3=Berridge |first3=Brian R. |last4=Austin |first4=Christopher P. |last5=Tagle |first5=Danilo A. |date=May 2021 |title=Organs-on-chips: into the next decade |url=https://pubmed.ncbi.nlm.nih.gov/32913334 |journal=Nature Reviews. Drug Discovery |volume=20 |issue=5 |pages=345–361 |doi=10.1038/s41573-020-0079-3 |issn=1474-1784 |pmid=32913334|hdl=1887/3151779 |s2cid=221621465 |hdl-access=free }}</ref> microdosing techniques which involve administering small doses of test compounds to human volunteers instead of non-human animals for safety tests or drug screenings; [[positron emission tomography]] (PET) scans which allow scanning of the human brain without harming humans; comparative epidemiological studies among human populations; simulators and computer programs for teaching purposes; among others.<ref>{{cite journal |last1=Löwa |first1=Anna |last2=Jevtić |first2=Marijana |last3=Gorreja |first3=Frida |last4=Hedtrich |first4=Sarah |date=May 2018 |title=Alternatives to animal testing in basic and preclinical research of atopic dermatitis |journal=Experimental Dermatology |volume=27 |issue=5 |pages=476–483 |doi=10.1111/exd.13498 |issn=1600-0625 |pmid=29356091|s2cid=3378256 |doi-access=free }}</ref><ref>{{cite journal |last1=Madden |first1=Judith C. |last2=Enoch |first2=Steven J. |last3=Paini |first3=Alicia |last4=Cronin |first4=Mark T. D. |date=July 2020 |title=A Review of In Silico Tools as Alternatives to Animal Testing: Principles, Resources and Applications |journal=Alternatives to Laboratory Animals |volume=48 |issue=4 |pages=146–172 |doi=10.1177/0261192920965977 |issn=0261-1929 |pmid=33119417|s2cid=226204296 |doi-access=free }}</ref><ref>{{cite journal |last1=Reddy |first1=Navya |last2=Lynch |first2=Barry |last3=Gujral |first3=Jaspreet |last4=Karnik |first4=Kavita |date=September 2023 |title=Alternatives to animal testing in toxicity testing: Current status and future perspectives in food safety assessments |url=https://pubmed.ncbi.nlm.nih.gov/37453475 |journal=Food and Chemical Toxicology|volume=179 |pages=113944 |doi=10.1016/j.fct.2023.113944 |issn=1873-6351 |pmid=37453475|s2cid=259915886 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)