Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Automatic summarization
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Computer-based method for summarizing a text}} {{More citations needed|date=April 2022}} '''Automatic summarization''' is the process of shortening a set of data computationally, to create a subset (a [[Abstract (summary)|summary]]) that represents the most important or relevant information within the original content. [[Artificial intelligence]] [[algorithm]]s are commonly developed and employed to achieve this, specialized for different types of data. [[Plain text|Text]] summarization is usually implemented by [[natural language processing]] methods, designed to locate the most informative sentences in a given document.<ref name="Torres2014">{{cite book|author1=Torres-Moreno, Juan-Manuel|title=Automatic Text Summarization|url=https://www.wiley.com/en-gb/Automatic+Text+Summarization-p-9781848216686|date=1 October 2014|publisher=Wiley|isbn=978-1-848-21668-6|pages=320β}}</ref> On the other hand, visual content can be summarized using [[computer vision]] algorithms. [[Image]] summarization is the subject of ongoing research; existing approaches typically attempt to display the most representative images from a given image collection, or generate a video that only includes the most important content from the entire collection.<ref>{{Cite journal|last1=Pan|first1=Xingjia|last2=Tang|first2=Fan|last3=Dong|first3=Weiming|last4=Ma|first4=Chongyang|last5=Meng|first5=Yiping|last6=Huang|first6=Feiyue|last7=Lee|first7=Tong-Yee|last8=Xu|first8=Changsheng|date=2021-04-01|title=Content-Based Visual Summarization for Image Collection|journal=IEEE Transactions on Visualization and Computer Graphics|volume=27|issue=4|pages=2298β2312|doi=10.1109/tvcg.2019.2948611|pmid=31647438|s2cid=204865221|issn=1077-2626}}</ref><ref>{{Cite news|date=January 10, 2018|title=WIPO PUBLISHES PATENT OF KT FOR "IMAGE SUMMARIZATION SYSTEM AND METHOD" (SOUTH KOREAN INVENTORS)|work=US Fed News Service|url=https://www.proquest.com/docview/1986931333|access-date=January 22, 2021|id={{ProQuest|1986931333}}}}</ref><ref>{{Cite journal|last1=Li Tan|last2=Yangqiu Song|last3=Shixia Liu|author3-link=Shixia Liu|last4=Lexing Xie|date=February 2012|title=ImageHive: Interactive Content-Aware Image Summarization|journal=IEEE Computer Graphics and Applications|volume=32|issue=1|pages=46β55|doi=10.1109/mcg.2011.89|pmid=24808292|s2cid=7668289|issn=0272-1716}}</ref> Video summarization algorithms identify and extract from the original video content the most important frames (''key-frames''), and/or the most important video segments (''key-shots''), normally in a temporally ordered fashion.<ref name="PalPetrosino2012">{{cite book|author1=Sankar K. Pal|author2=Alfredo Petrosino|author3=Lucia Maddalena|title=Handbook on Soft Computing for Video Surveillance|url=https://books.google.com/books?id=O0fNBQAAQBAJ&q=video+surveillance+summarization&pg=PA81|date=25 January 2012|publisher=CRC Press|isbn=978-1-4398-5685-7|pages=81β}}</ref><ref name="Elhamifar2012">{{cite book |last1=Elhamifar |first1=Ehsan |last2=Sapiro |first2=Guillermo |last3=Vidal |first3=Rene |title=2012 IEEE Conference on Computer Vision and Pattern Recognition |chapter=See all by looking at a few: Sparse modeling for finding representative objects |url=https://ieeexplore.ieee.org/document/6247852 |year=2012 |pages=1600β1607 |publisher=IEEE |doi=10.1109/CVPR.2012.6247852 |isbn=978-1-4673-1228-8 |s2cid=5909301 |access-date=4 December 2022}}</ref><ref name="Mademlis2016">{{cite journal |last1=Mademlis |first1=Ioannis |last2=Tefas |first2=Anastasios |last3=Nikolaidis |first3=Nikos |last4=Pitas |first4=Ioannis |title=Multimodal stereoscopic movie summarization conforming to narrative characteristics |url=https://research-information.bris.ac.uk/files/111433536/Ioannis_Pitas_Multimodal_Stereoscopic_Movie_Summarization_Conforming_to_Narrative_Characteristics.pdf |journal=IEEE Transactions on Image Processing |year=2016 |volume=25 |issue=12 |pages=5828β5840 |publisher=IEEE |doi=10.1109/TIP.2016.2615289 |pmid=28113502 |bibcode=2016ITIP...25.5828M |hdl=1983/2bcdd7a5-825f-4ac9-90ec-f2f538bfcb72 |s2cid=18566122 |access-date=4 December 2022}}</ref><ref name="Mademlis2018">{{cite journal |last1=Mademlis |first1=Ioannis |last2=Tefas |first2=Anastasios |last3=Pitas |first3=Ioannis |title=A salient dictionary learning framework for activity video summarization via key-frame extraction |url=https://www.sciencedirect.com/science/article/abs/pii/S0020025517311398 |journal=Information Sciences |year=2018 |volume=432 |pages=319β331 |publisher=Elsevier |doi=10.1016/j.ins.2017.12.020 |access-date=4 December 2022}}</ref> Video summaries simply retain a carefully selected subset of the original video frames and, therefore, are not identical to the output of [[video synopsis]] algorithms, where ''new'' video frames are being synthesized based on the original video content.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)