Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Axiom of empty set
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Axiom of Set Theory}} In [[axiomatic set theory]], the '''axiom of empty set''',<ref name=":0">{{Cite book |last=Cunningham |first=Daniel W. |title=Set theory: a first course |date=2016 |publisher=Cambridge University Press |isbn=978-1-107-12032-7 |series=Cambridge mathematical textbooks |location=New York, NY |pages=24}}</ref><ref name=":1">{{Cite web |title=Set Theory {{!}} Internet Encyclopedia of Philosophy |url=https://iep.utm.edu/set-theo/ |access-date=2024-06-10 |language=en-US}}</ref> also called the '''axiom of null set'''<ref name=":2">{{Citation |last=Bagaria |first=Joan |title=Set Theory |date=2023 |work=The Stanford Encyclopedia of Philosophy |editor-last=Zalta |editor-first=Edward N. |url=https://plato.stanford.edu/archives/spr2023/entries/set-theory/ |access-date=2024-06-10 |edition=Spring 2023 |publisher=Metaphysics Research Lab, Stanford University |editor2-last=Nodelman |editor2-first=Uri}}</ref> and the '''axiom of existence''',<ref>{{Cite book |last=Hrbacek |first=Karel |title=Introduction to set theory |last2=Jech |first2=Thomas J. |date=1999 |publisher=CRC Press |isbn=978-0-8247-7915-3 |edition=3. ed., rev. and expanded, [Repr.] |series=Pure and applied mathematics |location=Boca Raton, Fla. |pages=7}}</ref><ref name=":3" /> is a statement that asserts the existence of a set with no elements.<ref name=":2" /> It is an [[axiom]] of [[Kripke–Platek set theory]] and the variant of [[general set theory]] that Burgess (2005) calls "ST," and a demonstrable truth in [[Zermelo set theory]] and [[Zermelo–Fraenkel set theory]], with or without the [[axiom of choice]].<ref>{{Cite book |url=https://www.worldcat.org/oclc/50422939 |title=Set theory |last=Jech, Thomas J. |date=2003 |publisher=Springer |isbn=3-540-44085-2 |edition=The 3rd millennium ed., rev. and expanded |location=Berlin |pages=3 |language=en |oclc=50422939}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)