Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Base level
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Lowest limit for erosion processes}} [[File:Desembocadura del Ebro.jpg|thumb|Aerial picture of the [[Ebro]] river as it reaches the [[Mediterranean Sea]] by the [[Ebro Delta]]]] In [[geology]] and [[geomorphology]] a '''base level''' is the lower limit for an [[erosion|erosion process]].<ref name=Goudie2004>{{cite encyclopedia|last=Goudie|first=A.S.|author-link=Andrew Goudie (geographer)|editor-last=Goudie|editor-first=A.S.|encyclopedia=Encyclopedia of Geomorphology|title=Base level|year=2004|page=62|publisher=Routledge}}</ref> The modern term was introduced by [[John Wesley Powell]] in 1875.<ref name=Goudie2004/> The term was subsequently appropriated by [[William Morris Davis]] who used it in his [[cycle of erosion]] theory.<ref name=Goudie2004/><ref name=Orme2007>{{cite journal |last1=Orme |first1=Anthony R. |date=2007 |title=The Rise and Fall of the Davisian Cycle of Erosion: Prelude, Fugue, Coda, and Sequel |journal=Physical Geography |volume=28 |issue=6 |pages=474–506 |doi= 10.2747/0272-3646.28.6.474|bibcode=2007PhGeo..28..474O |s2cid=128907423 }}</ref> The "ultimate base level" is the surface that results from projection of the [[sea level]] under landmasses.<ref name=Goudie2004/> It is to this base level that topography tends to approach due to erosion, eventually forming a [[peneplain]] close to the end of a cycle of erosion.<ref name="Phillips">Phillips, Jonathan D. (2002), [https://www.sciencedirect.com/science/article/pii/S0169555X01001568 "Erosion, isostatic response, and the missing peneplains"], ''[[Geomorphology (journal)|Geomorphology]]'', Vol. 45, No. 3-4. [http://www.elsevier.com/wps/find/homepage.cws_home Elsevier] {{Webarchive|url=https://web.archive.org/web/20100124190936/http://www.elsevier.com/wps/find/homepage.cws_home |date=2010-01-24 }}, 15 June 2002, pp. 225-241. {{doi|10.1016/S0169-555X(01)00156-8}}.</ref><ref>Chorley, R.J. (1973). ''The History and Study of Landforms or The Development of Geomorphology. Vol. Two: The Life and Work of William Morris Davis,'' Methuen.</ref><ref name=Greenetal2013>{{cite journal |last1=Green |first1=Paul F. |last2=Lidmar-Bergström |first2=Karna |last4=Bonow |first4=Johan M. |last3=Japsen |first3=Peter |last5=Chalmers |first5=James A. |author-link2=Karna Lidmar-Bergström |date=2013 |title=Stratigraphic landscape analysis, thermochronology and the episodic development of elevated, passive continental margins |journal=[[Geological Survey of Denmark and Greenland|Geological Survey of Denmark and Greenland Bulletin]] |volume=30 |pages=18 |doi=10.34194/geusb.v30.4673 |doi-access=free }}</ref><ref name=Karnaetal2014>{{cite journal |last1=Lidmar-Bergström |first1=Karna |last2=Bonow |first2=Johan M. |last3=Japsen |first3=Peter |author-link=Karna Lidmar-Bergström|date=2013 |title=Stratigraphic Landscape Analysis and geomorphological paradigms: Scandinavia as an example of Phanerozoic uplift and subsidence |journal=[[Global and Planetary Change]] |volume=100 |pages=153–171 |doi= 10.1016/j.gloplacha.2012.10.015|bibcode=2013GPC...100..153L }}</ref> There are also lesser [[structural geology|structural]] base levels where erosion is delayed by resistant rocks.<ref name=Goudie2004/> Examples of this include [[karst]] regions underlain by insoluble rock.<ref name=Ford2004>{{cite encyclopedia|last=Ford|first=Derek C.|editor-link=Andrew Goudie (geographer)|editor-last=Goudie|editor-first=A.S.|encyclopedia=Encyclopedia of Geomorphology|title=Cave |year=2004 |pages=124–128 |publisher=Routledge}}</ref> Base levels may be local when large landmasses are far from the sea or disconnected from it, as in the case of [[endorheic basin]]s.<ref name=Goudie2004/> An example of this is the [[Messinian salinity crisis]], in which the [[Mediterranean Sea]] dried up making the base level drop more than 1000 m below sea level.<ref>{{cite journal |last1=Fairbridge |first1=Rhodes W. |last2=Finkl Jr. |first2=Charles W.|author-link=Rhodes Fairbridge |date=1980 |title=Cratonic erosion unconformities and peneplains |journal=[[The Journal of Geology]] |volume=88 |issue=1 |pages=69–86 |doi= 10.1086/628474|bibcode=1980JG.....88...69F |s2cid=129231129 }}</ref><ref name=Goudie2005>{{cite journal |last1=Goudie |first1=A.S.|author-link=Andrew Goudie (geographer) |date=2005 |title=The drainage of Africa since the Cretaceous |journal=[[Geomorphology (journal)|Geomorphology]] |volume=67 |issue= 3–4|pages=437–456 |doi= 10.1016/j.geomorph.2004.11.008|bibcode=2005Geomo..67..437G}}</ref> The height of a base level also influences the position of [[river delta|delta]]s and [[river terrace]]s.<ref name=Goudie2004/> Together with [[river discharge]] and [[sediment flux]] the position of the base level influences the [[stream gradient|gradient]], width and [[river bed|bed]] conditions in rivers.<ref name=Whipple2004>{{cite encyclopedia|last=Whipple|first=Kelin X.|editor-link=Andrew Goudie (geographer)|editor-last=Goudie|editor-first=A.S.|encyclopedia=Encyclopedia of Geomorphology|title=Bedrock channel|year=2004|pages=81–82|publisher=Routledge}}</ref> A relative drop in base level can trigger re-adjustments in [[river profile]]s including [[knickpoint]] migration and abandonment of terraces leaving them "hanging".<ref name=Spotila2004>{{cite encyclopedia|last=Spotila|first=James A.|editor-link=Andrew Goudie (geographer)|editor-last=Goudie|editor-first=A.S.|encyclopedia=Encyclopedia of Geomorphology|title=Crustal deformation|year=2004|pages=201–203|publisher=Routledge}}</ref> Base level fall is also known to result in [[progradation]] of deltas and river sediment at lakes or sea.<ref name=Kossetal1994>{{cite journal |last1=Koss |first1=John E.|last2=Ethridge |first2=Frank G.|last3=Schumm |first3=S.A. |date=1994 |title=An Experimental Study of the Effects of Base-Level Change on Fluvial, Coastal Plain and Shelf Systems |journal=Journal of Sedimentary Research |volume=64B |issue=2 |pages=90–98 |doi= 10.1306/D4267F64-2B26-11D7-8648000102C1865D}}</ref> If the base level falls below the [[continental shelf]], rivers may form a plain of [[braided river]]s until [[headward erosion]] penetrates enough inland from the [[Continental margin|shelfbreak]].<ref name=Kossetal1994/> When base levels are stable or rising rivers may [[aggradation|aggrade]].<ref name=Kossetal1994/> Rising base levels may also drown the lower courses of rivers creating [[ria]]s. This happened in the [[Nile]] during the [[Zanclean flood]] when its lower course became, in a relatively short time, a large estuary extending up to 900 km inland from the Mediterranean coast.<ref name=Goudie2005/> Base level change may be related to the following factors: #[[Sea level change]]<ref name=Goudie2004/> #[[Tectonic uplift|Tectonic movement]]<ref name=Goudie2004/> #[[Stream capture|River capture]]<ref name=Goudie2004/> #Extensive sedimentation<ref>{{cite journal |last1=Babault |first1=Julien |last2=Van Den Driessche |first2=Jean|last3=Bonnet |first3=Stephanie|last4=Castelltort |first4=Sébastien|last5=Crave |first5=Alain |date=2005 |title=Origin of the highly elevated Pyrenean peneplain |url= https://archive-ouverte.unige.ch/unige:20401/ATTACHMENT01|journal=Tectonics |volume=24 |issue= 2|pages=n/a |doi=10.1029/2004TC001697 |bibcode=2005Tecto..24.2010B |doi-access=free }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)