Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bertrand's postulate
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
[[File:Bertrand.jpg|thumb|[[Joseph Louis François Bertrand]]]] {{log(x)}} {{Short description|Existence of a prime number between any number and its double}} In [[number theory]], '''Bertrand's postulate''' is the [[theorem]] that for any [[integer]] <math>n > 3</math>, there exists at least one [[prime number]] <math>p</math> with :<math>n < p < 2n - 2.</math> A less restrictive formulation is: for every <math>n > 1</math>, there is always at least one prime <math>p</math> such that :<math>n < p < 2n.</math> Another formulation, where <math>p_n</math> is the <math>n</math>-th prime, is: for <math>n \ge 1</math> :<math> p_{n+1} < 2p_n.</math><ref>{{cite book|last=Ribenboim|first=Paulo|title=The Little Book of Bigger Primes|url=https://archive.org/details/littlebookbigger00ribe_610|url-access=limited|date=2004|publisher=Springer-Verlag|location=New York|isbn=978-0-387-20169-6|page=[https://archive.org/details/littlebookbigger00ribe_610/page/n205 181]}}</ref> This statement was first [[conjecture]]d in 1845 by [[Joseph Bertrand]]<ref>{{Citation|first=Joseph |last=Bertrand |author-link=Joseph Bertrand |title=Mémoire sur le nombre de valeurs que peut prendre une fonction quand on y permute les lettres qu'elle renferme. |journal=Journal de l'École Royale Polytechnique |issue=Cahier 30 |volume=18 |year=1845 |pages=123–140 |language=fr |url={{Google Books|WTa-qRIWckoC|page=123|plainurl=yes}}}}.</ref> (1822–1900). Bertrand himself verified his statement for all integers <math>2 \le n \le 3\,000\,000</math>. His conjecture was completely [[Proof of Bertrand's postulate|proved]] by [[Pafnuty Chebyshev|Chebyshev]] (1821–1894) in 1852<ref>{{Citation|first=P. |last=Tchebychev |author-link=Pafnuty Chebyshev |title=Mémoire sur les nombres premiers. |journal=Journal de mathématiques pures et appliquées |series=Série 1 |year=1852 |pages=366–390 |url=http://sites.mathdoc.fr/JMPA/PDF/JMPA_1852_1_17_A19_0.pdf |language=fr}}. (Proof of the postulate: 371-382). Also see {{Citation|first=P. |last=Tchebychev |author-link=Pafnuty Chebyshev |title=Mémoire sur les nombres premiers. |journal=Mémoires de l'Académie Impériale des Sciences de St. Pétersbourg |volume=7 |year=1854 |pages=15-33 |url=https://www.biodiversitylibrary.org/page/37114947 |language=fr}}</ref> and so the postulate is also called the '''Bertrand–Chebyshev theorem''' or '''Chebyshev's theorem'''. Chebyshev's theorem can also be stated as a relationship with <math>\pi(x)</math>, the [[prime-counting function]] (number of primes less than or equal to <math>x</math>): :<math>\pi(x) - \pi\bigl(\tfrac{x}{2}\bigr) \ge 1, \text{ for all } x \ge 2.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)