Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Beta distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Probability distribution}} {{Distinguish|Beta function}} {{Probability distribution | name = Beta | type = density | pdf_image = [[File:Beta distribution pdf.svg|325px|Probability density function for the beta distribution]] | cdf_image = [[File:Beta distribution cdf.svg|325px|Cumulative distribution function for the beta distribution]] | notation = Beta(''α'', ''β'') | parameters = ''α'' > 0 [[shape parameter|shape]] ([[real number|real]])<br />''β'' > 0 [[shape parameter|shape]] ([[real number|real]]) | support = <math>x \in [0, 1]\!</math> or <math>x \in (0, 1)\!</math> | pdf = <math>\frac{x^{\alpha-1}(1-x)^{\beta-1}} {\Beta(\alpha,\beta)}\!</math><br />where <math>\Beta(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}</math> and <math>\Gamma</math> is the [[Gamma function]]. | cdf = <math>I_x(\alpha,\beta)\!</math> (the [[Beta function#Incomplete beta function|regularized incomplete beta function]]) | mean = <math>\operatorname{E}[X] = \frac{\alpha}{\alpha+\beta}\!</math><br /><math>\operatorname{E}[\ln X] = \psi(\alpha) - \psi(\alpha + \beta)\!</math><br /><br /><math>\operatorname{E}[X \, \ln X] = \frac{\alpha}{\alpha+\beta}\,\left[\psi(\alpha+1)-\psi(\alpha+\beta+1)\right]\!</math><br /> (see section: [[#Geometric mean|Geometric mean]]) <br/> where <math>\psi</math> is the [[digamma function]] | median = <math>\begin{matrix}I_{\frac{1}{2}}^{[-1]}(\alpha,\beta)\text{ (in general) }\\[0.5em] \approx \frac{ \alpha - \tfrac{1}{3} }{ \alpha + \beta - \tfrac{2}{3} }\text{ for }\alpha, \beta >1\end{matrix}</math> | mode = <math>\frac{\alpha-1}{\alpha+\beta-2}\!</math> for ''α'', ''β'' > 1 Any value in the domain for ''α'' = ''β'' = 1 No mode if ''α''<1 or ''β''<1. Density diverges at 0 for ''α'' ≤ 1, and at 1 if ''β'' ≤ 1 | variance = <math>\operatorname{var}[X] = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}\!</math><br /><math>\operatorname{var}[\ln X] = \psi_1(\alpha) - \psi_1(\alpha + \beta)\!</math><br />(see [[trigamma function]] and see section: [[#Geometric variance and covariance|Geometric variance]]) | skewness = <math>\frac{2\,(\beta-\alpha)\sqrt{\alpha+\beta+1}}{(\alpha+\beta+2)\sqrt{\alpha\beta}}</math> | kurtosis = <math>\frac{6[(\alpha - \beta)^2 (\alpha +\beta + 1) - \alpha \beta (\alpha + \beta + 2)]}{\alpha \beta (\alpha + \beta + 2) (\alpha + \beta + 3)}</math> | entropy = <math>\begin{matrix}\ln\Beta(\alpha,\beta)-(\alpha-1)\psi(\alpha)-(\beta-1)\psi(\beta)\\[0.5em] {}+(\alpha+\beta-2)\psi(\alpha+\beta)\end{matrix}</math> | mgf = <math>1 +\sum_{k=1}^\infty \left( \prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r} \right) \frac{t^k}{k!}</math> | char = <math>{}_1F_1(\alpha; \alpha+\beta; i\,t)\!</math> (see [[Confluent hypergeometric function]]) | fisher = <math>\begin{bmatrix} \operatorname{var}[\ln X] &\operatorname{cov}[\ln X, \ln(1-X)] \\ \operatorname{cov}[\ln X, \ln(1-X)] & \operatorname{var}[\ln (1-X)]\end{bmatrix}</math> <br />see section: [[#Fisher information matrix|Fisher information matrix]] | moments = <math> \alpha = \left(\frac{E[X](1 - E[X])}{V[X]} - 1 \right)E[X] </math><br /><math>\beta = \left(\frac{E[X](1 - E[X])}{V[X]} - 1 \right)(1 - E[X])</math> }} In [[probability theory]] and [[statistics]], the '''beta distribution''' is a family of continuous [[probability distribution]]s defined on the interval [0, 1] or (0, 1) in terms of two positive [[Statistical parameter|parameters]], denoted by ''alpha'' (''α'') and ''beta'' (''β''), that appear as exponents of the variable and its complement to 1, respectively, and control the [[shape parameter|shape]] of the distribution. The beta distribution has been applied to model the behavior of [[random variables]] limited to intervals of finite length in a wide variety of disciplines. The beta distribution is a suitable model for the random behavior of percentages and proportions. In [[Bayesian inference]], the beta distribution is the [[conjugate prior distribution|conjugate prior probability distribution]] for the [[Bernoulli distribution|Bernoulli]], [[binomial distribution|binomial]], [[negative binomial distribution|negative binomial]], and [[geometric distribution|geometric]] distributions. The formulation of the beta distribution discussed here is also known as the '''beta distribution of the first kind''', whereas ''beta distribution of the second kind'' is an alternative name for the [[beta prime distribution]]. The generalization to multiple variables is called a [[Dirichlet distribution]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)