Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Block matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Matrix defined using smaller matrices called blocks}} In [[mathematics]], a '''block matrix''' or a '''partitioned matrix''' is a [[matrix (mathematics)|matrix]] that is interpreted as having been broken into sections called '''blocks''' or '''submatrices'''.<ref>{{cite book |last=Eves |first=Howard |author-link=Howard Eves |title=Elementary Matrix Theory |year=1980 |publisher=Dover |location=New York |isbn=0-486-63946-0 |page=[https://archive.org/details/elementarymatrix0000eves_r2m2/page/37 37] |url=https://archive.org/details/elementarymatrix0000eves_r2m2 |url-access=registration |edition=reprint |access-date=24 April 2013 |quote=We shall find that it is sometimes convenient to subdivide a matrix into rectangular blocks of elements. This leads us to consider so-called ''partitioned'', or ''block'', ''matrices''.}}</ref><ref name=":8">{{Cite web |last=Dobrushkin |first=Vladimir |date= |title=Partition Matrices |url=https://www.cfm.brown.edu/people/dobrush/cs52/Mathematica/Part2/partition.html |access-date=2024-03-24 |website=Linear Algebra with Mathematica}}</ref> Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix with a collection of horizontal and vertical lines, which break it up, or [[Partition of a set|partition]] it, into a collection of smaller matrices.<ref>{{cite book |last=Anton |first=Howard |title=Elementary Linear Algebra |year=1994 |publisher=John Wiley |location=New York |isbn=0-471-58742-7 |page=30 |edition=7th |quote=A matrix can be subdivided or '''''partitioned''''' into smaller matrices by inserting horizontal and vertical rules between selected rows and columns.}}</ref><ref name=":8" /> For example, the 3x4 matrix presented below is divided by horizontal and vertical lines into four blocks: the top-left 2x3 block, the top-right 2x1 block, the bottom-left 1x3 block, and the bottom-right 1x1 block. :<math> \left[ \begin{array}{ccc|c} a_{11} & a_{12} & a_{13} & b_{1} \\ a_{21} & a_{22} & a_{23} & b_{2} \\ \hline c_{1} & c_{2} & c_{3} & d \end{array} \right] </math> Any matrix may be interpreted as a block matrix in one or more ways, with each interpretation defined by how its rows and columns are partitioned. This notion can be made more precise for an <math>n</math> by <math>m</math> matrix <math>M</math> by partitioning <math>n</math> into a collection <math>\text{rowgroups}</math>, and then partitioning <math>m</math> into a collection <math>\text{colgroups}</math>. The original matrix is then considered as the "total" of these groups, in the sense that the <math>(i, j)</math> entry of the original matrix corresponds in a [[Bijection|1-to-1]] way with some <math>(s, t)</math> [[offset (computer science)|offset]] entry of some <math>(x,y)</math>, where <math>x \in \text{rowgroups}</math> and <math>y \in \text{colgroups}</math>.<ref>{{Cite journal |last1=Indhumathi |first1=D. |last2=Sarala |first2=S. |date=2014-05-16 |title=Fragment Analysis and Test Case Generation using F-Measure for Adaptive Random Testing and Partitioned Block based Adaptive Random Testing |url=http://research.ijcaonline.org/volume93/number6/pxc3895662.pdf |journal=International Journal of Computer Applications |volume=93 |issue=6 |pages=13 |doi=10.5120/16218-5662|bibcode=2014IJCA...93f..11I }}</ref> Block matrix algebra arises in general from [[biproduct]]s in [[Category (mathematics)|categories]] of matrices.<ref>{{cite journal | last1 = Macedo | first1 = H.D. | last2 = Oliveira | first2 = J.N. | year = 2013 | title = Typing linear algebra: A biproduct-oriented approach | doi = 10.1016/j.scico.2012.07.012 | journal = Science of Computer Programming | volume = 78 | issue = 11| pages = 2160β2191 | arxiv = 1312.4818 }}</ref> [[File:BlockMatrix168square.png|thumb|A 168Γ168 element block matrix with 12Γ12, 12Γ24, 24Γ12, and 24Γ24 sub-matrices. Non-zero elements are in blue, zero elements are grayed.]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)