Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Boolean function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Function returning one of only two values}} {{distinguish|Binary function}} [[File:BinaryDecisionTree.svg|thumb|A [[binary decision diagram]] and [[truth table]] of a ternary Boolean function]] {{Logical connectives sidebar}} In [[mathematics]], a '''Boolean function''' is a [[function (mathematics)|function]] whose [[Argument of a function|arguments]] and result assume values from a two-element set (usually {true, false}, {0,1} or {β1,1}).<ref>{{Cite web|title=Boolean function - Encyclopedia of Mathematics|url=https://encyclopediaofmath.org/wiki/Boolean_function|access-date=2021-05-03|website=encyclopediaofmath.org}}</ref><ref>{{Cite web|last=Weisstein|first=Eric W.|title=Boolean Function|url=https://mathworld.wolfram.com/BooleanFunction.html|access-date=2021-05-03|website=mathworld.wolfram.com|language=en}}</ref> Alternative names are '''switching function''', used especially in older [[computer science]] literature,<ref>{{Cite web|title=switching function|url=https://encyclopedia2.thefreedictionary.com/switching+function|access-date=2021-05-03|website=TheFreeDictionary.com}}</ref><ref>{{Cite journal|last=Davies|first=D. W.|date=December 1957|title=Switching Functions of Three Variables|url=https://ieeexplore.ieee.org/document/5222038|journal=IRE Transactions on Electronic Computers|volume=EC-6|issue=4|pages=265β275|doi=10.1109/TEC.1957.5222038|issn=0367-9950}}</ref> and '''[[truth function]]''' (or '''logical function)''', used in [[logic]]. Boolean functions are the subject of [[Boolean algebra]] and [[switching theory]].<ref>{{Citation|last=McCluskey|first=Edward J.|title=Switching theory|date=2003-01-01|url=https://dl.acm.org/doi/10.5555/1074100.1074844|encyclopedia=Encyclopedia of Computer Science|pages=1727β1731|place=GBR|publisher=John Wiley and Sons Ltd.|doi=|isbn=978-0-470-86412-8|access-date=2021-05-03}}</ref> A Boolean function takes the form <math>f:\{0,1\}^k \to \{0,1\}</math>, where <math>\{0,1\}</math> is known as the [[Boolean domain]] and <math>k</math> is a non-negative integer called the [[arity]] of the function. In the case where <math>k=0</math>, the function is a constant element of <math>\{0,1\}</math>. A Boolean function with multiple outputs, <math>f:\{0,1\}^k \to \{0,1\}^m</math> with <math>m>1</math> is a '''vectorial''' or ''vector-valued'' Boolean function (an [[S-box]] in symmetric [[cryptography]]).<ref name=":2" /> There are <math>2^{2^k}</math> different Boolean functions with <math>k</math> arguments; equal to the number of different [[truth table]]s with <math>2^k</math> entries. Every <math>k</math>-ary Boolean function can be expressed as a [[propositional formula]] in <math>k</math> variables <math>x_1,...,x_k</math>, and two propositional formulas are [[logical equivalence|logically equivalent]] if and only if they express the same Boolean function.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)