Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Brain–computer interface
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{for|direct brain control of prosthetic devices|Neuroprosthetics}} {{Use dmy dates|date=December 2022}} {{Short description|Direct communication pathway between an enhanced or wired brain and an external device}} [[File:BrainGate.jpg|thumb|Dummy unit illustrating the design of a [[BrainGate]] interface]] A '''brain–computer interface''' ('''BCI'''), sometimes called a '''brain–machine interface''' ('''BMI'''), is a direct communication link between the [[brain]]'s electrical activity and an external device, most commonly a computer or robotic limb. BCIs are often directed at researching, [[Brain mapping|mapping]], assisting, [[Augmented cognition|augmenting]], or repairing human [[Cognitive skill|cognitive]] or [[Sensory-motor coupling|sensory-motor functions]].<ref name="Krucoff 584">{{cite journal | vauthors = Krucoff MO, Rahimpour S, Slutzky MW, Edgerton VR, Turner DA | title = Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation | journal = Frontiers in Neuroscience | volume = 10 | page = 584 |year=2016 | pmid = 28082858 | pmc = 5186786 | doi = 10.3389/fnins.2016.00584 | doi-access = free }}</ref> They are often conceptualized as a [[human–machine interface]] that skips the intermediary of moving body parts (e.g. hands or feet). BCI implementations range from non-invasive ([[EEG]], [[Magnetoencephalography|MEG]], [[MRI]]) and partially invasive ([[ECoG]] and endovascular) to invasive ([[microelectrode array]]), based on how physically close electrodes are to brain tissue.<ref name=":7">{{Cite journal |last1=Martini |first1=Michael L. |last2=Oermann |first2=Eric Karl |last3=Opie |first3=Nicholas L. |last4=Panov |first4=Fedor |last5=Oxley |first5=Thomas |last6=Yaeger |first6=Kurt |date=February 2020 |title=Sensor Modalities for Brain-Computer Interface Technology: A Comprehensive Literature Review |url=https://journals.lww.com/neurosurgery/abstract/2020/02000/sensor_modalities_for_brain_computer_interface.22.aspx |journal=Neurosurgery |language=en-US |volume=86 |issue=2 |pages=E108–E117 |doi=10.1093/neuros/nyz286 |pmid=31361011 |issn=0148-396X}}</ref> Research on BCIs began in the 1970s by Jacques Vidal at the [[University of California, Los Angeles]] (UCLA) under a grant from the [[National Science Foundation]], followed by a contract from the Defense Advanced Research Projects Agency ([[DARPA]]).<ref name="Vidal1">{{cite journal | vauthors = Vidal JJ | title = Toward direct brain-computer communication | journal = Annual Review of Biophysics and Bioengineering | volume = 2 | issue = 1 | pages = 157–180 | year = 1973 | pmid = 4583653 | doi = 10.1146/annurev.bb.02.060173.001105 | doi-access = free }}</ref><ref name="Vidal2">{{cite journal| vauthors = Vidal J |title=Real-Time Detection of Brain Events in EEG|journal= Proceedings of the IEEE|year=1977|volume=65|pages=633–641|doi=10.1109/PROC.1977.10542|issue=5|s2cid=7928242}}</ref> Vidal's 1973 paper introduced the expression ''brain–computer interface'' into scientific literature. Due to the [[cortical plasticity]] of the brain, signals from implanted [[prostheses]] can, after adaptation, be handled by the brain like natural sensor or effector channels.<ref>{{cite journal | vauthors = Levine SP, Huggins JE, BeMent SL, Kushwaha RK, Schuh LA, Rohde MM, Passaro EA, Ross DA, Elisevich KV, Smith BJ | display-authors = 6 | title = A direct brain interface based on event-related potentials | journal = IEEE Transactions on Rehabilitation Engineering | volume = 8 | issue = 2 | pages = 180–185 | date = June 2000 | pmid = 10896180 | doi = 10.1109/86.847809 }}</ref> Following years of animal experimentation, the first [[neuroprosthetic]] devices were implanted in humans in the mid-1990s. {{TOC limit|4}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)