Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cantor's diagonal argument
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Proof in set theory}} {{Anchor|Lead}}[[Image:Diagonal argument 01 svg.svg|right|thumb|250px|An illustration of Cantor's diagonal argument (in base 2) for the existence of [[uncountable set]]s. The sequence at the bottom cannot occur anywhere in the enumeration of sequences above.]] [[File:Aplicación 2 inyectiva sobreyectiva02.svg|right|thumb|250px|An [[infinite set]] may have the same [[cardinality]] as a proper [[subset]] of itself, as the depicted [[bijection]] ''f''(''x'')=2''x'' from the [[natural numbers|natural]] to the [[even numbers]] demonstrates. Nevertheless, infinite sets of different cardinalities exist, as Cantor's diagonal argument shows.]] '''Cantor's diagonal argument''' (among various similar names<ref group="note">the '''diagonalisation argument''', the '''diagonal slash argument''', the '''anti-diagonal argument''', the '''diagonal method''', and '''Cantor's diagonalization proof'''</ref>) is a [[mathematical proof]] that there are [[infinite set]]s which cannot be put into [[bijection|one-to-one correspondence]] with the infinite set of [[natural number]]s{{snd}}informally, that there are [[Set (mathematics)|set]]s which in some sense contain more elements than there are positive integers. Such sets are now called [[uncountable set]]s, and the size of infinite sets is treated by the theory of [[cardinal number]]s, which Cantor began. [[Georg Cantor]] published this proof in 1891,<ref name="Cantor.1891">{{cite journal|author=Georg Cantor |title=Ueber eine elementare Frage der Mannigfaltigkeitslehre |journal=[[Jahresbericht der Deutschen Mathematiker-Vereinigung]] |volume=1 |pages=75–78 |year=1891|url=https://www.digizeitschriften.de/dms/img/?PID=GDZPPN002113910&physid=phys84#navi}} English translation: {{cite book |editor-last=Ewald |editor-first=William B. |title=From Immanuel Kant to David Hilbert: A Source Book in the Foundations of Mathematics, Volume 2 |publisher=Oxford University Press |pages=920–922 |year=1996 |isbn=0-19-850536-1}}</ref><ref name="Simmons1993">{{cite book|author=Keith Simmons| author-link=Keith Simmons (philosopher)| title=Universality and the Liar: An Essay on Truth and the Diagonal Argument|url=https://books.google.com/books?id=wEj3Spept0AC&pg=PA20|date=30 July 1993|publisher=Cambridge University Press|isbn=978-0-521-43069-2}}</ref>{{rp|20–}}<ref name="Rubin1976">{{cite book|last1=Rudin|first1=Walter|title=Principles of Mathematical Analysis|date=1976|publisher=McGraw-Hill|location=New York|isbn=0070856133|page=[https://archive.org/details/principlesofmath00rudi/page/30 30]|edition=3rd|url-access=registration|url=https://archive.org/details/principlesofmath00rudi/page/30}}</ref> but it was not [[Cantor's first uncountability proof|his first proof]] of the uncountability of the [[real number]]s, which appeared in 1874.<ref>{{Citation |surname=Gray|given=Robert|year=1994 |url=http://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/Gray819-832.pdf |title=Georg Cantor and Transcendental Numbers|journal=[[American Mathematical Monthly]]|volume=101|issue=9|pages=819–832 |doi=10.2307/2975129|jstor=2975129}}</ref><ref name="Bloch2011">{{cite book|last1=Bloch|first1=Ethan D.|title=The Real Numbers and Real Analysis|url=https://archive.org/details/realnumbersreala00edbl|url-access=limited|date=2011|publisher=Springer|location=New York|isbn=978-0-387-72176-7|page=[https://archive.org/details/realnumbersreala00edbl/page/n458 429]}}</ref> However, it demonstrates a general technique that has since been used in a wide range of proofs,<ref>{{cite book |title=The Logic of Infinity |edition=illustrated |first1=Barnaby |last1=Sheppard |publisher=Cambridge University Press |year=2014 |isbn=978-1-107-05831-6 |page=73 |url=https://books.google.com/books?id=RXzsAwAAQBAJ}} [https://books.google.com/books?id=RXzsAwAAQBAJ&pg=PA73 Extract of page 73]</ref> including the first of [[Gödel's incompleteness theorems]]<ref name="Simmons1993"/> and Turing's answer to the ''[[Entscheidungsproblem]]''. Diagonalization arguments are often also the source of contradictions like [[Russell's paradox]]<ref>{{cite book|url=http://plato.stanford.edu/entries/russell-paradox|title=Russell's paradox|year=2021 |publisher=Stanford encyclopedia of philosophy}}</ref><ref>{{cite book|author=Bertrand Russell|title=Principles of mathematics|pages=363–366|publisher=Norton|year=1931}}</ref> and [[Richard's paradox]].<ref name="Simmons1993"/>{{rp|27}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)