Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cantor function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Use American English|date = March 2019}} {{Short description|Continuous function that is not absolutely continuous}} [[File:CantorEscalier-2.svg|thumb|right|400px|The graph of the Cantor function on the [[unit interval]] ]] In [[mathematics]], the '''Cantor function''' is an example of a [[function (mathematics)|function]] that is [[continuous function|continuous]], but not [[absolute continuity|absolutely continuous]]. It is a notorious [[Pathological_(mathematics)#Pathological_example|counterexample]] in analysis, because it challenges naive intuitions about continuity, [[derivative]], and [[Measure (mathematics)|measure]]. Although it is continuous everywhere, and has zero derivative almost everywhere, its value still goes from 0 to 1 as its argument goes from 0 to 1. Thus, while the function seems like a constant one that cannot grow, it does indeed [[Monotonic function|monotonically]] grow. It is also called the '''Cantor ternary function''', the '''Lebesgue function''',<ref>{{harvnb|Vestrup|2003|loc=Section 4.6.}}</ref> '''Lebesgue's singular function''', the '''Cantor–Vitali function''', the '''Devil's staircase''',<ref>{{harvnb|Thomson|Bruckner|Bruckner|2008|p=252}}.</ref> the '''Cantor staircase function''',<ref>{{Cite web|url=http://mathworld.wolfram.com/CantorStaircaseFunction.html|title=Cantor Staircase Function}}</ref> and the '''Cantor–Lebesgue function'''.<ref>{{harvnb|Bass|2013|p=28}}.</ref> {{harvs|txt|first=Georg |last=Cantor|authorlink=Georg Cantor|year=1884}} introduced the Cantor function and mentioned that Scheeffer pointed out that it was a [[counterexample]] to an extension of the [[fundamental theorem of calculus]] claimed by [[Carl Gustav Axel Harnack|Harnack]]. The Cantor function was discussed and popularized by {{harvtxt|Scheeffer|1884}}, {{harvtxt|Lebesgue|1904}}, and {{harvtxt|Vitali|1905}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)