Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Center (group theory)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Set of elements that commute with every element of a group}} {{Use American English|date=March 2021}} {{Use mdy dates|date=March 2021}} {{redirect|Group center|the American counter-cultural group|Aldo Tambellini#Lower East Side artists}} {| class="wikitable floatright" |+ style="text-align: left;" | [[Cayley table]] for [[Dihedral group of order 8|D<sub>4</sub>]] showing elements of the center, {e, a<sup>2</sup>}, commute with all other elements (this can be seen by noticing that all occurrences of a given center element are arranged symmetrically about the center diagonal or by noticing that the row and column starting with a given center element are [[Transpose|transposes]] of each other). |- ! <math>\circ</math> || e|| b|| a|| a<sup>2</sup>|| a<sup>3</sup>|| ab|| a<sup>2</sup>b|| a<sup>3</sup>b |- align="center" ! e | style="background: green; color: white;" | '''e'''|| b|| a|| style="background: red; color: white;" | a<sup>2</sup>|| a<sup>3</sup>|| ab|| a<sup>2</sup>b|| a<sup>3</sup>b |- align="center" ! b | b|| style="background: green; color: white;" | '''e'''|| a<sup>3</sup>b|| a<sup>2</sup>b|| ab|| a<sup>3</sup>|| style="background: red; color: white;" | a<sup>2</sup>|| a |- align="center" ! a | a|| ab|| style="background: red; color: white;" | a<sup>2</sup>|| a<sup>3</sup>|| style="background: green; color: white;" | '''e'''|| a<sup>2</sup>b|| a<sup>3</sup>b|| b |- align="center" ! a<sup>2</sup> | style="background: red; color: white;" | a<sup>2</sup>|| a<sup>2</sup>b|| a<sup>3</sup>|| style="background: green; color: white;" | '''e'''|| a|| a<sup>3</sup>b|| b|| ab |- align="center" ! a<sup>3</sup> | a<sup>3</sup> || a<sup>3</sup>b|| style="background: green; color: white;" | '''e'''|| a|| style="background: red; color: white;" | a<sup>2</sup>|| b|| ab|| a<sup>2</sup>b |- align="center" ! ab | ab|| a|| b|| a<sup>3</sup>b|| a<sup>2</sup>b|| style="background: green; color: white;" | '''e'''|| a<sup>3</sup>|| style="background: red; color: white;" | a<sup>2</sup> |- align="center" ! a<sup>2</sup>b | a<sup>2</sup>b|| style="background: red; color: white;" | a<sup>2</sup>|| ab|| b|| a<sup>3</sup>b|| a|| style="background: green; color: white;" | '''e'''|| a<sup>3</sup> |- align="center" ! a<sup>3</sup>b | a<sup>3</sup>b|| a<sup>3</sup>|| a<sup>2</sup>b|| ab|| b|| style="background: red; color: white;" | a<sup>2</sup>|| a|| style="background: green; color: white;" | '''e''' |} In [[abstract algebra]], the '''center''' of a [[group (mathematics)|group]] {{math|''G''}} is the [[set (mathematics)|set]] of elements that [[commutative|commute]] with every element of {{math|''G''}}. It is denoted {{math|Z(''G'')}}, from German ''[[wikt:Zentrum|Zentrum]],'' meaning ''center''. In [[set-builder notation]], :{{math|1=Z(''G'') = {{mset|''z'' β ''G'' | β''g'' β ''G'', ''zg'' {{=}} ''gz''}}}}. The center is a [[normal subgroup]], <math>Z(G)\triangleleft G</math>, and also a [[characteristic subgroup|characteristic]] subgroup, but is not necessarily [[fully characteristic subgroup|fully characteristic]]. The [[quotient group]], {{math|''G'' / Z(''G'')}}, is [[group isomorphism|isomorphic]] to the [[inner automorphism]] group, {{math|Inn(''G'')}}. A group {{math|''G''}} is abelian if and only if {{math|1=Z(''G'') = ''G''}}. At the other extreme, a group is said to be '''centerless''' if {{math|Z(''G'')}} is [[trivial group|trivial]]; i.e., consists only of the [[identity element]]. The elements of the center are '''central elements'''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)