Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Codomain
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Target set of a mathematical function}} [[File:Codomain2.SVG|right|thumb|250px|A function {{mvar|f}} from {{mvar|X}} to {{mvar|Y}}. The blue oval {{mvar|Y}} is the codomain of {{mvar|f}}. The yellow oval inside {{mvar|Y}} is the [[Image (mathematics)|image]] of {{mvar|f}}, and the red oval {{mvar|X}} is the [[Domain of a function|domain]] of {{mvar|f}}.]] In [[mathematics]], a '''codomain''', '''counter-domain''', or '''set of destination''' of a [[Function (mathematics)|function]] is a [[Set (mathematics)|set]] into which all of the output of the function is constrained to fall. It is the set {{mvar|Y}} in the notation {{math|''f'': ''X'' β ''Y''}}. The term '''''[[Range of a function|range]]''''' is sometimes ambiguously used to refer to either the codomain or the [[Image (mathematics)|''image'']] of a function. A codomain is part of a function {{mvar|f}} if {{mvar|f}} is defined as a triple {{math|(''X'', ''Y'', ''G'')}} where {{mvar|X}} is called the ''[[Domain of a function|domain]]'' of {{mvar|f}}, {{mvar|Y}} its ''codomain'', and {{mvar|G}} its ''[[Graph of a function|graph]]''.<ref>{{Harvnb|Bourbaki|1970|p=76}}</ref> The set of all elements of the form {{math|''f''(''x'')}}, where {{mvar|x}} ranges over the elements of the domain {{mvar|X}}, is called the ''[[Image (mathematics)|image]]'' of {{mvar|f}}. The image of a function is a [[subset]] of its codomain so it might not coincide with it. Namely, a function that is not [[Surjective function|surjective]] has elements {{mvar|y}} in its codomain for which the equation {{math|1=''f''(''x'') = ''y''}} does not have a solution. A codomain is not part of a function {{mvar|f}} if {{mvar|f}} is defined as just a graph.<ref>{{Harvnb|Bourbaki|1970|p=77}}</ref><ref>{{Harvnb|Forster|2003}}, [{{Google books|plainurl=y|id=mVeTuaRwWssC|page=10|text=Some mathematical cultures make this explicit, saying that a function}} pp. 10–11]</ref> For example in [[set theory]] it is desirable to permit the domain of a function to be a [[Class (set theory)|proper class]] {{mvar|X}}, in which case there is formally no such thing as a triple {{math|(''X'', ''Y'', ''G'')}}. With such a definition functions do not have a codomain, although some authors still use it informally after introducing a function in the form {{math|''f'': ''X'' β ''Y''}}.<ref>{{Harvnb|Eccles|1997}}, p. 91 ([{{Google books|plainurl=y|id=ImCSX_gm40oC|page=91|text=The reader may wonder at this variety of ways of thinking about a function}} quote 1], [{{Google books|plainurl=y|id=ImCSX_gm40oC|page=91|text=When defining a function using a formula it is important to be clear about which sets are the domain and the codomain of the function}} quote 2]); {{Harvnb|Mac Lane|1998}}, [{{Google books|plainurl=y|id=MXboNPdTv7QC|page=8|text=Here "function" means a function with specified domain and specified codomain}} p. 8]; Mac Lane, in {{Harvnb|Scott|Jech|1967}}, [{{Google books|plainurl=y|id=5mf4Vckj0gEC|page=232|text=Note explicitly that the notion of function is not that customary in axiomatic set theory}} p. 232]; {{Harvnb|Sharma|2004}}, [{{Google books|plainurl=y|id=IGvDpe6hYiQC|page=91|text=Functions as sets of ordered pairs}} p. 91]; {{Harvnb|Stewart|Tall|1977}}, [{{Google books|plainurl=y|id=TLelvnIU2sEC|page=89|text=Strictly speaking we cannot talk of 'the' codomain of a function}} p. 89]</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)