Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Complex multiplication
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Theory of a class of elliptic curves}} {{about|a topic in the theory of [[elliptic curves]]|information about multiplication of complex numbers|complex numbers}} In [[mathematics]], '''complex multiplication''' ('''CM''') is the theory of [[elliptic curve]]s ''E'' that have an [[endomorphism ring]] larger than the [[integer]]s.{{sfn|Silverman|2009|p=69|loc=Remark 4.3}} Put another way, it contains the theory of [[elliptic function]]s with extra symmetries, such as are visible when the [[period lattice]] is the [[Gaussian integer]] [[Lattice (group)|lattice]] or [[Eisenstein integer]] lattice. It has an aspect belonging to the theory of [[special function]]s, because such elliptic functions, or [[abelian function]]s of [[several complex variables]], are then 'very special' functions satisfying extra identities and taking explicitly calculable special values at particular points. It has also turned out to be a central theme in [[algebraic number theory]], allowing some features of the theory of [[cyclotomic field]]s to be carried over to wider areas of application. [[David Hilbert]] is said to have remarked that the theory of complex multiplication of elliptic curves was not only the most beautiful part of mathematics but of all science.<ref>{{Citation | last=Reid | first=Constance | author-link=Constance Reid | title=Hilbert | publisher=Springer | isbn=978-0-387-94674-0 | year=1996 | page=[https://archive.org/details/hilbert0000reid/page/200 200] | url=https://archive.org/details/hilbert0000reid/page/200 }}</ref> There is also the [[Complex multiplication of abelian varieties|higher-dimensional complex multiplication theory]] of [[abelian variety|abelian varieties]] ''A'' having ''enough'' endomorphisms in a certain precise sense, roughly that the action on the [[tangent space]] at the [[identity element]] of ''A'' is a [[direct sum of modules|direct sum]] of one-dimensional [[module (mathematics)|modules]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)