Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Concentration of measure
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Use American English|date=January 2019}} {{Use mdy dates|date=January 2019}} {{Short description|Statistical parameter}} In [[mathematics]], '''concentration of measure''' (about a [[median]]) is a principle that is applied in [[measure theory]], [[probability]] and [[combinatorics]], and has consequences for other fields such as [[Banach space]] theory. Informally, it states that "A random variable that depends in a [[Lipschitz continuity|Lipschitz]] way on many independent variables (but not too much on any of them) is essentially constant".<ref>{{cite journal | first1=Michel | last1=Talagrand | authorlink1=Michel Talagrand | title=A New Look at Independence | journal=[[Annals of Probability]] | year=1996 | volume=24 | issue=1 | pages=1–34 | doi=10.1214/aop/1042644705 | doi-access=free}}</ref> The concentration of measure phenomenon was put forth in the early 1970s by [[Vitali Milman]] in his works on the local theory of [[Banach space]]s, extending an idea going back to the work of [[Paul Lévy (mathematician)|Paul Lévy]].<ref>"''The concentration of <math>f_\ast(\mu)</math>, ubiquitous in the probability theory and statistical mechanics, was brought to geometry (starting from Banach spaces) by Vitali Milman, following the earlier work by Paul Lévy''" - [[Mikhail Gromov (mathematician)|M. Gromov]], Spaces and questions, GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal. 2000, Special Volume, Part I, 118–161.</ref><ref>"''The idea of concentration of measure (which was discovered by V.Milman) is arguably one of the great ideas of analysis in our times. While its impact on Probability is only a small part of the whole picture, this impact should not be ignored.''" - [[Michel Talagrand|M. Talagrand]], A new look at independence, Ann. Probab. 24 (1996), no. 1, 1–34.</ref> It was further developed in the works of Milman and [[Mikhail Gromov (mathematician)|Gromov]], [[Bernard Maurey|Maurey]], [[Gilles Pisier|Pisier]], [[Gideon Schechtman|Schechtman]], [[Michel Talagrand|Talagrand]], [[Michel Ledoux|Ledoux]], and others.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)