Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cryogenics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Study of the production and behaviour of materials at very low temperatures}} {{redirect|Low temperature physics|the journal|Low Temperature Physics (journal)}} {{for-multi|cryopreservation of humans|Cryonics|the band|Cryogenic (band)}} [[File:Liquidnitrogen.jpg|thumb|[[Liquid nitrogen|Nitrogen is a liquid]] under {{convert|-195.8|C|K}}. ]] In [[physics]], '''cryogenics''' is the production and behaviour of materials at very low [[temperature]]s. The 13th [[International Institute of Refrigeration]]'s (IIR) International Congress of Refrigeration (held in Washington, DC in 1971) endorsed a universal definition of "cryogenics" and "cryogenic" by accepting a threshold of {{convert|120|K|C}} to distinguish these terms from conventional refrigeration.<ref>International Dictionary of Refrigeration, http://dictionary.iifiir.org/search.php, {{Webarchive|url=https://web.archive.org/web/20191001210219/http://dictionary.iifiir.org/search.php|date=2019-10-01}}.</ref><ref>ASHRAE Terminology, https://www.ashrae.org/technical-resources/free-resources/ashrae-terminology.</ref><ref>"Cryogenics is usually defined as the science and technology dealing with temperatures less than about 120 K [4, 5], although this review does not adhere to a strict 120 K definition." K. D. Timmerhaus, R. Reed. ''Cryogenic Engineering: Fifty Years of Progress''. Springer Science+Business Media LLC (2007), chapter: 1.2, The Beginning of Cryogenics, p. 7.</ref><ref>{{cite web | url=https://trc.nist.gov/cryogenics/aboutCryogenics.html | title=About Cryogenics | quote=In terms of the Kelvin scale the cryogenic region is often considered to be that below approximately 120 K (−153 C).}}</ref> This is a logical dividing line, since the normal [[boiling point]]s of the so-called permanent [[gas]]es (such as [[helium]], [[hydrogen]], [[neon]], [[nitrogen]], [[oxygen]], and normal [[air]]) lie below 120 K, while the [[Freon]] refrigerants, [[hydrocarbon]]s, and other common refrigerants have boiling points above 120 K.<ref>{{Cite web|url=https://pubchem.ncbi.nlm.nih.gov/compound/dichlorodifluoromethane#section=Chemical-and-Physical-Properties|title=DICHLORODIFLUOROMETHANE at Pubchem}}</ref><ref>{{Cite web|url=https://pubchem.ncbi.nlm.nih.gov/compound/propane#section=Boiling-Point|title=PROPANE at Pubchem}}</ref> Discovery of [[superconducting]] materials with critical temperatures significantly above the boiling point of nitrogen has provided new interest in reliable, low-cost methods of producing high-temperature cryogenic refrigeration. The term "high temperature cryogenic" describes temperatures ranging from above the boiling point of liquid nitrogen, {{convert|-195.79|°C|K °F|2}}, up to {{convert|-50|°C|K °F|0}}.<ref>J. M. Nash, 1991, "Vortex Expansion Devices for High Temperature Cryogenics", Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, Vol. 4, pp. 521–525.</ref> The discovery of superconductive properties is first attributed to [[Heike Kamerlingh Onnes]] on July 10, 1908, after they were able to reach a temperature of 2 K. These first superconductive properties were observed in mercury at a temperature of 4.2 K.<ref>{{Citation |last=Radebaugh |first=R. |title=Historical Summary of Cryogenic Activity Prior to 1950 |date=2007 |work=Cryogenic Engineering |pages=3–27 |editor-last=Timmerhaus |editor-first=Klaus D. |series=International Cryogenics Monograph Series |place=New York, New York |publisher=Springer |language=en |bibcode=2007cren.book....3R |doi=10.1007/0-387-46896-x_1 |isbn=978-0-387-46896-9 |editor2-last=Reed |editor2-first=Richard P. |doi-access=free}}.</ref> Cryogenicists use the [[Kelvin]] or [[Rankine scale|Rankine]] temperature scale, both of which measure from [[absolute zero]], rather than more usual scales such as [[Celsius]] which measures from the freezing point of water at sea level<ref>Celsius, Anders (1742) [https://archive.org/stream/kungligasvenskav1317kung#page/170/mode/2up/search "Observationer om twänne beständiga grader på en thermometer"] (Observations about two stable degrees on a thermometer), ''Kungliga Svenska Vetenskapsakademiens Handlingar'' (Proceedings of the Royal Swedish Academy of Sciences), '''3''': 171–180 and [https://archive.org/stream/kungligasvenskav1317kung#page/232/mode/2up Fig. 1.]</ref><ref name="EOC 1">[[Don Rittner]]; Ronald A. Bailey (2005): [https://books.google.com/books?id=Y2MNUNFg-8gC&pg=PA43 ''Encyclopedia of Chemistry.''] [[Facts On File]], [[Manhattan]], New York City, p. 43.</ref> or [[Fahrenheit]] which measures from the freezing point of a particular brine solution at sea level.<ref name=":0">[https://www.britannica.com/science/Fahrenheit-temperature-scale Fahrenheit temperature scale], Encyclopædia Britannica Online. 25 September 2015.</ref><ref>{{cite web|title=Fahrenheit: Facts, History & Conversion Formulas|url=https://www.livescience.com/39916-fahrenheit.html|access-date=2018-02-09|website=Live Science}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)