Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
D'Alembert operator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Second-order differential operator}} {{distinguish|d'Alembert's principle|d'Alembert's equation}} {{DISPLAYTITLE:d'Alembert operator}} In [[special relativity]], [[electromagnetism]] and [[Wave|wave theory]], the '''d'Alembert operator''' (denoted by a box: <math>\Box</math>), also called the '''d'Alembertian''', '''wave operator''', '''box operator''' or sometimes '''quabla operator'''<ref>{{Cite book |url=https://www.worldcat.org/oclc/899608232 |title=Theoretische Physik |date=2015 |isbn=978-3-642-54618-1 |edition=Aufl. 2015 |location=Berlin, Heidelberg |oclc=899608232 |last1=Bartelmann |first1=Matthias |last2=Feuerbacher |first2=Björn |last3=Krüger |first3=Timm |last4=Lüst |first4=Dieter |last5=Rebhan |first5=Anton |last6=Wipf |first6=Andreas }}</ref> (''cf''. [[nabla symbol]]) is the [[Laplace operator]] of [[Minkowski space]]. The operator is named after French mathematician and physicist [[Jean le Rond d'Alembert]]. In Minkowski space, in standard coordinates {{math|(''t'', ''x'', ''y'', ''z'')}}, it has the form : <math> \begin{align} \Box & = \partial^\mu \partial_\mu = \eta^{\mu\nu} \partial_\nu \partial_\mu = \frac{1}{c^{2}} \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial z^2} \\ & = \frac{1}{c^2} {\partial^2 \over \partial t^2} - \nabla^2 = \frac{1}{c^2}{\partial^2 \over \partial t^2} - \Delta ~~. \end{align} </math> Here <math> \nabla^2 := \Delta </math> is the 3-dimensional [[Laplace operator|Laplacian]] and {{math|''η<sup>μν</sup>''}} is the inverse [[Minkowski metric]] with :<math>\eta_{00} = 1</math>, <math>\eta_{11} = \eta_{22} = \eta_{33} = -1</math>, <math>\eta_{\mu\nu} = 0</math> for <math>\mu \neq \nu</math>. Note that the {{math|''μ''}} and {{math|''ν''}} summation indices range from 0 to 3: see [[Einstein notation]]. (Some authors alternatively use the negative [[metric signature]] of {{nowrap|(− + + +)}}, with <math>\eta_{00} = -1,\; \eta_{11} = \eta_{22} = \eta_{33} = 1</math>.) [[Lorentz transformation]]s leave the [[Minkowski metric]] invariant, so the d'Alembertian yields a [[Lorentz scalar]]. The above coordinate expressions remain valid for the standard coordinates in every inertial frame.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)