Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
De Boor's algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Method of evaluating spline curves}} In the [[mathematics|mathematical]] subfield of [[numerical analysis]], '''de Boor's algorithm'''<ref name="de_boor_paper">C. de Boor [1971], "Subroutine package for calculating with B-splines", Techn.Rep. LA-4728-MS, Los Alamos Sci.Lab, Los Alamos NM; p. 109, 121.</ref> is a [[polynomial-time]] and [[numerically stable]] [[algorithm]] for evaluating [[spline curve]]s in [[B-spline]] form. It is a generalization of [[de Casteljau's algorithm]] for [[BΓ©zier curve]]s. The algorithm was devised by German-American mathematician [[Carl R. de Boor]]. Simplified, potentially faster variants of the de Boor algorithm have been created but they suffer from comparatively lower stability.<ref>{{cite journal |last=Lee |first=E. T. Y. |date=December 1982 |title=A Simplified B-Spline Computation Routine |journal=Computing |volume=29 |issue=4 |pages=365β371 |publisher=Springer-Verlag | doi=10.1007/BF02246763|s2cid=2407104 }}</ref><ref>{{cite journal | author = Lee, E. T. Y. | journal = Computing | issue = 3 | pages = 229β238 | publisher = Springer-Verlag | doi=10.1007/BF02240069|title = Comments on some B-spline algorithms | volume = 36 | year = 1986| s2cid = 7003455 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)