Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Design matrix
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Matrix of values of explanatory variables}} In [[statistics]] and in particular in [[regression analysis]], a '''design matrix''', also known as '''model matrix''' or '''regressor matrix''' and often denoted by '''X''', is a [[matrix (mathematics)|matrix]] of values of [[explanatory variable]]s of a set of objects. Each row represents an individual object, with the successive columns corresponding to the variables and their specific values for that object. The design matrix is used in certain [[statistical model]]s, e.g., the [[general linear model]].<ref>{{cite book |last=Everitt |first=B. S. |year=2002 |title=Cambridge Dictionary of Statistics |edition=2nd |location=Cambridge, UK |publisher=Cambridge University Press |isbn=0-521-81099-X }}</ref><ref>{{cite book |last1=Box |first1=G. E. P. |author-link=George E. P. Box|author2-link=George Tiao |last2=Tiao |first2=G. C. |year=1992 |orig-year=1973 |title=Bayesian Inference in Statistical Analysis |location=New York |publisher=John Wiley and Sons |isbn=0-471-57428-7 }} (Section 8.1.1)</ref><ref>{{cite book |last=Timm |first=Neil H. |title=Applied Multivariate Analysis |publisher=Springer Science & Business Media |year=2007 |page=107 |isbn=9780387227719 |url=https://books.google.com/books?id=vtiyg6fnnskC&pg=PA107 }}</ref> It can contain [[indicator variable]]s (ones and zeros) that indicate group membership in an [[ANOVA]], or it can contain values of [[continuous variable]]s. The design matrix contains data on the [[independent variable]]s (also called explanatory variables), in a statistical model that is intended to explain observed data on a response variable (often called a [[dependent variable]]). The theory relating to such models uses the design matrix as input to some [[linear algebra]] : see for example [[linear regression]]. A notable feature of the concept of a design matrix is that it is able to represent a number of different [[experimental design]]s and statistical models, e.g., [[ANOVA]], [[ANCOVA]], and linear regression.{{citation needed|date=April 2013}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)