Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Difference quotient
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Expression in calculus}} {{broader|Finite difference}} In single-variable [[calculus]], the '''difference quotient''' is usually the name for the expression :<math> \frac{f(x+h) - f(x)}{h} </math> which when taken to the [[Limit of a function|limit]] as ''h'' approaches 0 gives the [[derivative]] of the [[Function (mathematics)|function]] ''f''.<ref name="LaxTerrell2013">{{cite book|author1=Peter D. Lax|author2=Maria Shea Terrell|title=Calculus With Applications|year=2013|publisher=Springer|isbn=978-1-4614-7946-8|page=119}}</ref><ref name="HockettBock2005">{{cite book|author1=Shirley O. Hockett|author2=David Bock|title=Barron's how to Prepare for the AP Calculus|year=2005|publisher=Barron's Educational Series|isbn=978-0-7641-2382-5|page=[https://archive.org/details/isbn_9780764177668/page/44 44]|url-access=registration|url=https://archive.org/details/isbn_9780764177668/page/44}}</ref><ref name="Ryan2010">{{cite book|author=Mark Ryan|title=Calculus Essentials For Dummies|year=2010|publisher=John Wiley & Sons|isbn=978-0-470-64269-6|pages=41β47}}</ref><ref name="NealGustafson2012">{{cite book|author1=Karla Neal|author2=R. Gustafson|author3=Jeff Hughes|title=Precalculus|year=2012|publisher=Cengage Learning|isbn=978-0-495-82662-0|page=133}}</ref> The name of the expression stems from the fact that it is the [[quotient]] of the [[Difference (mathematics)|difference]] of values of the function by the difference of the corresponding values of its argument (the latter is (''x'' + ''h'') - ''x'' = ''h'' in this case).<ref name="Comenetz2002">{{cite book|author=Michael Comenetz|title=Calculus: The Elements|year=2002|publisher=World Scientific|isbn=978-981-02-4904-5|pages=71β76 and 151β161}}</ref><ref name="Pasch2010">{{cite book|author=Moritz Pasch|title=Essays on the Foundations of Mathematics by Moritz Pasch|year=2010|publisher=Springer|isbn=978-90-481-9416-2|page=157}}</ref> The difference quotient is a measure of the [[average]] [[rate of change (mathematics)|rate of change]] of the function over an [[Interval (mathematics)|interval]] (in this case, an interval of length ''h'').<ref name="WilsonAdamson2008">{{cite book|author1=Frank C. Wilson|author2=Scott Adamson|title=Applied Calculus|year=2008|publisher=Cengage Learning|isbn=978-0-618-61104-1|page=177}}</ref><ref name="RubySellers2014"/>{{rp|237}}<ref name="HungerfordShaw2008">{{cite book|author1=Thomas Hungerford|author2=Douglas Shaw|title=Contemporary Precalculus: A Graphing Approach|year=2008|publisher=Cengage Learning|isbn=978-0-495-10833-7|pages=211β212}}</ref> The limit of the difference quotient (i.e., the derivative) is thus the [[instantaneous]] rate of change.<ref name="HungerfordShaw2008"/> By a slight change in notation (and viewpoint), for an interval [''a'', ''b''], the difference quotient :<math> \frac{f(b) - f(a)}{b-a}</math> is called<ref name="Comenetz2002"/> the mean (or average) value of the derivative of ''f'' over the interval [''a'', ''b'']. This name is justified by the [[mean value theorem]], which states that for a [[differentiable function]] ''f'', its derivative ''{{prime|f}}'' reaches its [[Mean of a function|mean value]] at some point in the interval.<ref name="Comenetz2002"/> Geometrically, this difference quotient measures the [[slope]] of the [[secant line]] passing through the points with coordinates (''a'', ''f''(''a'')) and (''b'', ''f''(''b'')).<ref name="Krantz2014">{{cite book|author=Steven G. Krantz|title=Foundations of Analysis|year=2014|publisher=CRC Press|isbn=978-1-4822-2075-9|page=127}}</ref> Difference quotients are used as approximations in [[numerical differentiation]],<ref name="RubySellers2014">{{cite book|author1=Tamara Lefcourt Ruby|author2=James Sellers|author3=Lisa Korf |author4=Jeremy Van Horn |author5=Mike Munn|title=Kaplan AP Calculus AB & BC 2015|year=2014|publisher=Kaplan Publishing|isbn=978-1-61865-686-5|page=299}}</ref> but they have also been subject of criticism in this application.<ref name="GriewankWalther2008">{{cite book|author1=Andreas Griewank|author2=Andrea Walther|author2-link=Andrea Walther|title=Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Second Edition|url=https://books.google.com/books?id=qMLUIsgCwvUC&pg=PA2|year=2008|publisher=SIAM|isbn=978-0-89871-659-7|pages=2β}}</ref> Difference quotients may also find relevance in applications involving [[Temporal discretization |Time discretization]], where the width of the time step is used for the value of h. The difference quotient is sometimes also called the '''Newton quotient'''<ref name="Krantz2014"/><ref name="Lang1968">{{cite book|author=Serge Lang|title=Analysis 1|url=https://archive.org/details/analysisi0000lang|url-access=registration|year=1968|publisher=Addison-Wesley Publishing Company|page=[https://archive.org/details/analysisi0000lang/page/56 56]|author-link=Serge Lang}}</ref><ref name="Hahn1994">{{cite book|author=Brian D. Hahn|title=Fortran 90 for Scientists and Engineers|year=1994|publisher=Elsevier|isbn=978-0-340-60034-4|page=276}}</ref><ref name="ClaphamNicholson2009">{{cite book|author1=Christopher Clapham|author2=James Nicholson|title=The Concise Oxford Dictionary of Mathematics|url=https://archive.org/details/conciseoxforddic00clap|url-access=limited|year=2009|publisher=Oxford University Press|isbn=978-0-19-157976-9|page=[https://archive.org/details/conciseoxforddic00clap/page/n312 313]}}</ref> (after [[Isaac Newton]]) or '''Fermat's difference quotient''' (after [[Pierre de Fermat]]).<ref>Donald C. Benson, ''A Smoother Pebble: Mathematical Explorations'', Oxford University Press, 2003, p. 176.</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)