Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Digamma function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical function}} {{For|Barnes' gamma function of two variables |double gamma function}} [[File:Digamma.png|thumb|300px|The digamma function <math>\psi(z)</math>,<br>visualized using [[domain coloring]]]] [[File:Mplwp polygamma03.svg|thumb|300px|Plots of the digamma and the next three polygamma functions along the real line (they are real-valued on the real line)]] In [[mathematics]], the '''digamma function''' is defined as the [[logarithmic derivative]] of the [[gamma function]]:<ref name="AbramowitzStegun"/><ref name="DLMF5"/><ref name="Weissstein"/> :<math>\psi(z) = \frac{\mathrm{d}}{\mathrm{d}z}\ln\Gamma(z) = \frac{\Gamma'(z)}{\Gamma(z)}.</math> It is the first of the [[polygamma function]]s. This function is [[Monotonic function|strictly increasing]] and [[Concave function|strictly concave]] on <math>(0,\infty)</math>,<ref>{{Cite journal |last1=Alzer |first1=Horst |last2=Jameson |first2=Graham |date=2017 |title=A harmonic mean inequality for the digamma function and related results |url=https://core.ac.uk/download/pdf/228202664.pdf |journal=Rendiconti del Seminario Matematico della Università di Padova |volume=137 |pages=203–209|doi=10.4171/RSMUP/137-10 }}</ref> and it [[Asymptotic analysis|asymptotically behaves]] as<ref>{{cite web |url=https://dlmf.nist.gov/5.11 |title=NIST. Digital Library of Mathematical Functions (DLMF), 5.11.}}</ref> :<math>\psi(z) \sim \ln{z} - \frac{1}{2z},</math> for complex numbers with large modulus (<math>|z|\rightarrow\infty</math>) in the [[Circular sector|sector]] <math>|\arg z|<\pi-\varepsilon</math> for any <math>\varepsilon > 0</math>. The digamma function is often denoted as <math>\psi_0(x), \psi^{(0)}(x) </math> or {{math|Ϝ}}<ref>{{cite book |last=Pairman |first=Eleanor |author-link=Eleanor Pairman |date=1919 |title=Tables of the Digamma and Trigamma Functions |url=https://archive.org/details/cu31924001468416/page/n9/mode/2up |publisher=Cambridge University Press |page=5}}</ref> (the uppercase form of the archaic Greek [[consonant]] [[digamma]] meaning [[Gamma|double-gamma]]). Gamma.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)