Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dimensionless quantity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Quantity with no physical dimension}} {{For|dimensionless physical constants|dimensionless physical constant}} {{Use dmy dates|date=December 2022|cs1-dates=y}} {{More citations needed|date=March 2017}} '''Dimensionless quantities''', or quantities of dimension one,<ref>{{cite web |url=http://www.iso.org/sites/JCGM/VIM/JCGM_200e_FILES/MAIN_JCGM_200e/01_e.html#L_1_8 |title='''1.8''' (1.6) '''quantity of dimension one''' dimensionless quantity |work=International vocabulary of metrology β Basic and general concepts and associated terms (VIM) |publisher=[[International Organization for Standardization|ISO]] |date=2008 |access-date=2011-03-22}}</ref> are quantities [[implicitly defined]] in a manner that prevents their aggregation into [[unit of measurement|units of measurement]].<ref name="SI Brochure">{{cite web |url=https://www.bipm.org/en/publications/si-brochure/ |title=SI Brochure: The International System of Units, 9th Edition |publisher=[[International Bureau of Weights and Measures|BIPM]]}} ISBN 978-92-822-2272-0.</ref><ref>{{cite journal |author-last1=Mohr |author-first1=Peter J. |author-last2=Phillips |author-first2=William Daniel |author-link2=William Daniel Phillips |date=2015-06-01 |title=Dimensionless units in the SI |url=https://www.nist.gov/publications/dimensionless-units-si |journal=[[Metrologia]] |language=en |volume=52}}</ref> Typically expressed as [[ratio]]s that align with another system, these quantities do not necessitate explicitly defined [[Unit of measurement|units]]. For instance, [[alcohol by volume]] (ABV) represents a [[volumetric ratio]]; its value remains independent of the specific [[Unit of volume|units of volume]] used, such as in [[milliliter]]s per milliliter (mL/mL). The [[1|number one]] is recognized as a dimensionless [[Base unit of measurement|base quantity]].<ref>{{Cite journal |last=Mills |first=I. M. |date=May 1995 |title=Unity as a Unit |url=https://dx.doi.org/10.1088/0026-1394/31/6/013 |journal=Metrologia |language=en |volume=31 |issue=6 |pages=537β541 |doi=10.1088/0026-1394/31/6/013 |bibcode=1995Metro..31..537M |issn=0026-1394}}</ref> [[Radian]]s serve as dimensionless units for [[Angle|angular measurements]], derived from the universal ratio of 2Ο times the [[radius]] of a circle being equal to its circumference.<ref>{{Cite book |last=Zebrowski |first=Ernest |url=https://books.google.com/books?id=2twRfiUwkxYC&dq=universal+ratio+of+2%CF%80+times+the+radius+of+a+circle+being+equal+to+its+circumference&pg=PR9 |title=A History of the Circle: Mathematical Reasoning and the Physical Universe |date=1999 |publisher=Rutgers University Press |isbn=978-0-8135-2898-4 |language=en}}</ref> Dimensionless quantities play a crucial role serving as [[parameter]]s in [[differential equation]]s in various technical disciplines. In [[calculus]], concepts like the unitless ratios in [[Limits of integration|limits]] or [[derivative]]s often involve dimensionless quantities. In [[differential geometry]], the use of dimensionless parameters is evident in geometric relationships and transformations. Physics relies on dimensionless numbers like the [[Reynolds number]] in [[fluid dynamics]],<ref>{{Cite book |last1=Cengel |first1=Yunus |url=https://books.google.com/books?id=LIZvEAAAQBAJ&dq=calculus,+concepts+like+the+unitless+ratios+in+limits+or+derivatives+often+involve+dimensionless+quantities&pg=PP1 |title=EBOOK: Fluid Mechanics Fundamentals and Applications (SI units) |last2=Cimbala |first2=John |date=2013-10-16 |publisher=McGraw Hill |isbn=978-0-07-717359-3 |language=en}}</ref> the [[fine-structure constant]] in [[quantum mechanics]],<ref>{{Cite journal |last1=Webb |first1=J. K. |last2=King |first2=J. A. |last3=Murphy |first3=M. T. |last4=Flambaum |first4=V. V. |last5=Carswell |first5=R. F. |last6=Bainbridge |first6=M. B. |date=2011-10-31 |title=Indications of a Spatial Variation of the Fine Structure Constant |url=https://link.aps.org/doi/10.1103/PhysRevLett.107.191101 |journal=Physical Review Letters |volume=107 |issue=19 |pages=191101 |doi=10.1103/PhysRevLett.107.191101|pmid=22181590 |arxiv=1008.3907 |bibcode=2011PhRvL.107s1101W }}</ref> and the [[Lorentz factor]] in [[Special relativity|relativity]].<ref>{{Cite journal |last=Einstein |first=A. |date=2005-02-23 |title=Zur Elektrodynamik bewegter KΓΆrper [AdP 17, 891 (1905)] |url=https://onlinelibrary.wiley.com/doi/10.1002/andp.200590006 |journal=Annalen der Physik |language=en |volume=14 |issue=S1 |pages=194β224 |doi=10.1002/andp.200590006}}</ref> In [[chemistry]], [[Equation of state|state properties]] and ratios such as [[mole fraction]]s [[concentration ratio]]s are dimensionless.<ref>{{Cite journal |last1=Ghosh |first1=Soumyadeep |last2=Johns |first2=Russell T. |date=2016-09-06 |title=Dimensionless Equation of State to Predict Microemulsion Phase Behavior |url=https://pubs.acs.org/doi/10.1021/acs.langmuir.6b02666 |journal=Langmuir |language=en |volume=32 |issue=35 |pages=8969β8979 |doi=10.1021/acs.langmuir.6b02666 |pmid=27504666 |issn=0743-7463}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)