Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet–Jordan test
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{redirect-distinguish|Dirichlet conditions|Dirichlet boundary condition}} In [[mathematics]], the '''Dirichlet–Jordan test''' gives [[sufficient condition]]s for a [[complex numbers|complex-valued]], [[periodic function]] <math>f</math> to be equal to the sum of its [[Fourier series]] at a point of continuity. Moreover, the behavior of the Fourier series at points of discontinuity is determined as well (it is the midpoint of the values of the discontinuity). It is one of many conditions for the [[convergence of Fourier series]]. The original test was established by [[Peter Gustav Lejeune Dirichlet]] in 1829,<ref>{{citation|author=Dirichlet|year=1829|title=Sur la convergence des series trigonometriques qui servent à represénter une fonction arbitraire entre des limites donnees|journal=J. Reine Angew. Math.|volume= 4|pages=157–169}}</ref> for piecewise [[monotone function]]s (functions with a finite number of sections per period each of which is monotonic). It was extended in the late 19th century by [[Camille Jordan]] to functions of [[bounded variation]] in each period (any function of bounded variation is the difference of two monotonically increasing functions).<ref name="Fourier series and Fourier integrals"/><ref>{{citation|author=C. Jordan|title= Cours d'analyse de l'Ecole Polytechnique, t.2, calcul integral|publisher= Gauthier-Villars, Paris, 1894}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)