Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirichlet distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Probability distribution}} {{Probability distribution | name =Dirichlet distribution| type =density| pdf_image =Dirichlet.pdf| cdf_image =| parameters =<math>K \geq 2</math> number of categories ([[integer]])<br /><math>\boldsymbol\alpha=(\alpha_1,\ldots,\alpha_K)</math> [[concentration parameter]]s, where <math>\alpha_i > 0</math>| support =<math>x_1, \ldots, x_K</math> where <math>x_i \in [0,1]</math> and <math>\sum_{i=1}^K x_i = 1</math> <br /> (i.e. a <math>K-1</math> [[simplex]])| pdf =<math>\frac{1}{\mathrm{B}(\boldsymbol\alpha)} \prod_{i=1}^K x_i^{\alpha_i - 1} </math><br />where <math>\mathrm{B}(\boldsymbol\alpha) = \frac{\prod_{i=1}^K \Gamma(\alpha_i)}{\Gamma\bigl(\alpha_0\bigr)}</math><br />where <math>\alpha_0 = \sum_{i=1}^K\alpha_i</math>| cdf =| mean =<math>\operatorname{E}[X_i] = \frac{\alpha_i}{\alpha_0}</math><br /><math> \operatorname{E}[\ln X_i] = \psi(\alpha_i)-\psi(\alpha_0)</math><br />(where <math>\psi</math> is the [[digamma function]])| median =| mode =<math>x_i = \frac{\alpha_i - 1}{\alpha_0 - K}, \quad \alpha_i > 1. </math>| variance =<math>\operatorname{Var}[X_i] = \frac{\tilde{\alpha}_i(1-\tilde{\alpha}_i)}{\alpha_0+1},</math> <math>\operatorname{Cov}[X_i,X_j] = \frac{\delta_{ij}\,\tilde{\alpha}_i-\tilde{\alpha}_i \tilde{\alpha}_j}{\alpha_0+1}</math> <br/>where <math>\tilde{\alpha}_i = \frac{\alpha_i}{\alpha_0}</math>, and <math>\delta_{ij}</math> is the [[Kronecker delta]] | skewness =| kurtosis =| entropy = <math> H(X) = \log \mathrm{B}(\boldsymbol\alpha)</math><math> + (\alpha_0-K)\psi(\alpha_0) -</math><math> \sum_{j=1}^K (\alpha_j-1)\psi(\alpha_j) </math><br/>with <math>\alpha_0</math> defined as for variance, above; and <math>\psi</math> is the [[digamma function]]| moments = <math> \alpha_i = E[X_i]\left(\frac{E[X_j](1 - E[X_j])}{V[X_j]} - 1 \right)</math> where {{mvar|j}} is any index, possibly {{mvar|i}} itself }} In [[probability]] and [[statistics]], the '''Dirichlet distribution''' (after [[Peter Gustav Lejeune Dirichlet]]), often denoted <math>\operatorname{Dir}(\boldsymbol\alpha)</math>, is a family of [[Continuous probability distribution|continuous]] [[multivariate random variable|multivariate]] [[probability distribution]]s parameterized by a vector {{math|'''Ξ±'''}} of positive [[real number|reals]]. It is a multivariate generalization of the [[beta distribution]],<ref name=KBJ>{{cite book|author1=S. Kotz |author2=N. Balakrishnan |author3=N. L. Johnson |title= Continuous Multivariate Distributions. Volume 1: Models and Applications|year=2000| publisher=Wiley|location= New York|isbn=978-0-471-18387-7}} (Chapter 49: Dirichlet and Inverted Dirichlet Distributions)</ref> hence its alternative name of '''multivariate beta distribution''' ('''MBD''').<ref>{{Cite journal |jstor = 2238036|title = Multivariate Beta Distributions and Independence Properties of the Wishart Distribution|journal = The Annals of Mathematical Statistics|volume = 35|issue = 1|pages = 261β269|last1 = Olkin|first1 = Ingram|last2 = Rubin|first2 = Herman|year = 1964|doi=10.1214/aoms/1177703748|doi-access = free}}</ref> Dirichlet distributions are commonly used as [[prior distribution]]s in [[Bayesian statistics]], and in fact, the Dirichlet distribution is the [[conjugate prior]] of the [[categorical distribution]] and [[multinomial distribution]]. The infinite-dimensional generalization of the Dirichlet distribution is the ''[[Dirichlet process]]''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)