Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Endosymbiont
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Organism that lives within the body or cells of another organism}} {{Use dmy dates|date=January 2020}} [[File:Endosymbiosis.PNG|thumb|200px|A representation of the [[endosymbiotic theory]]]] An '''endosymbiont''' or '''endobiont'''<ref name="KingDom">{{cite book |vauthors=Margulis L, Chapman MJ |author1-link=Lynn Margulis |title=Kingdoms & domains an illustrated guide to the phyla of life on Earth |date=2009 |publisher=Academic Press/Elsevier |location=Amsterdam |isbn=978-0-08-092014-6 |page=493 |edition=4th |url=https://books.google.com/books?id=9IWaqAOGyt4C&pg=PA493}}</ref> is an [[organism]] that lives within the body or cells of another organism. Typically the two organisms are in a [[mutualism (biology)|mutualistic]] relationship. Examples are [[nitrogen-fixing]] [[bacteria]] (called [[rhizobia]]), which live in the [[root nodule]]s of [[legume]]s, single-cell [[algae]] inside [[Coral reef|reef-building]] [[coral]]s, and bacterial endosymbionts that provide essential nutrients to [[insect]]s.<ref name="pmid29393944">{{cite journal |vauthors=Mergaert P |date=April 2018 |title=Role of antimicrobial peptides in controlling symbiotic bacterial populations |journal=Natural Product Reports |volume=35 |issue=4 |pages=336β356 |doi=10.1039/c7np00056a |pmid=29393944}}</ref><ref name="pmid15178799">{{cite journal |vauthors=Little AF, van Oppen MJ, Willis BL |date=June 2004 |title=Flexibility in algal endosymbioses shapes growth in reef corals |journal=Science |volume=304 |issue=5676 |pages=1492β1494 |bibcode=2004Sci...304.1491L |doi=10.1126/science.1095733 |pmid=15178799 |s2cid=10050417}}</ref> Endosymbiosis played key roles in the development of [[eukaryotes]] and plants. Roughly 2.2 billion years ago an [[archaeon]] absorbed a [[bacterium]] through [[phagocytosis]], that eventually became the [[mitochondria]] that provide energy to almost all living [[Eukaryote|eukaryotic]] cells. Approximately 1 billion years ago, some of those cells absorbed [[cyanobacteria]] that eventually became [[chloroplasts]], [[organelles]] that produce energy from sunlight.<ref>{{Cite web |last=Baisas |first=Laura |date=2024-04-18 |title=For the first time in one billion years, two lifeforms truly merged into one organism |url=https://www.popsci.com/science/two-lifeforms-merged-into-one/ |access-date=2024-04-26 |website=Popular Science |language=en-US}}</ref> Approximately 100 million years ago, a lineage of amoeba in the genus ''[[Paulinella]]'' independently engulfed a cyanobacterium that evolved to be functionally synonymous with traditional chloroplasts, called chromatophores.<ref>{{Cite journal |last1=Macorano |first1=Luis |last2=Nowack |first2=Eva C.M. |date=2021-09-13 |title=Paulinella chromatophora |url=https://linkinghub.elsevier.com/retrieve/pii/S0960982221009830 |journal=Current Biology |volume=31 |issue=17 |pages=R1024βR1026 |doi=10.1016/j.cub.2021.07.028 |bibcode=2021CBio...31R1024M |issn=0960-9822|url-access=subscription }}</ref> Some 100 million years ago, [[UCYN-A]], a nitrogen-fixing bacterium, became an endosymbiont of the marine alga ''[[Braarudosphaera bigelowii]]'', eventually evolving into a [[nitroplast]], which fixes nitrogen.<ref name="nature.com">{{Cite journal |last=Wong |first=Carissa |date=11 April 2024 |title=Scientists discover first algae that can fix nitrogen β thanks to a tiny cell structure |journal=Nature |volume=628 |issue=8009 |page=702 |url=https://www.nature.com/articles/d41586-024-01046-z |archive-url=http://web.archive.org/web/20240414144507/https://www.nature.com/articles/d41586-024-01046-z |archive-date=14 April 2024 |access-date=16 April 2024 |publisher=Nature.com|doi=10.1038/d41586-024-01046-z |pmid=38605201 |bibcode=2024Natur.628..702W |url-access=subscription }}</ref> Similarly, [[diatom]]s in the family ''Rhopalodiaceae'' have cyanobacterial endosymbionts, called spheroid bodies or diazoplasts, which have been proposed to be in the early stages of organelle evolution.<ref>{{cite journal |title=Genomic divergence within non-photosynthetic cyanobacterial endosymbionts in rhopalodiacean diatoms |date=2017 |pmc=5638926 |pmid=29026213 |last1=Nakayama |first1=T. |last2=Inagaki |first2=Y. |journal=Scientific Reports |volume=7 |issue=1 |page=13075 |doi=10.1038/s41598-017-13578-8 |bibcode=2017NatSR...713075N }}</ref><ref>{{Cite journal |last1=Schvarcz |first1=Christopher R. |last2=Wilson |first2=Samuel T. |last3=Caffin |first3=Mathieu |last4=Stancheva |first4=Rosalina |last5=Li |first5=Qian |last6=Turk-Kubo |first6=Kendra A. |last7=White |first7=Angelicque E. |last8=Karl |first8=David M. |last9=Zehr |first9=Jonathan P. |last10=Steward |first10=Grieg F. |date=2022-02-10 |title=Overlooked and widespread pennate diatom-diazotroph symbioses in the sea |journal=Nature Communications |language=en |volume=13 |issue=1 |pages=799 |doi=10.1038/s41467-022-28065-6 |issn=2041-1723 |pmc=8831587 |pmid=35145076|bibcode=2022NatCo..13..799S }}</ref> Symbionts are either obligate (require their host to survive) or facultative (can survive independently).<ref name="Bright-2010">{{Cite journal |last1=Bright |first1=Monika |last2=Bulgheresi |first2=Silvia |date=March 2010 |title=A complex journey: transmission of microbial symbionts |journal=Nature Reviews Microbiology |language=en |volume=8 |issue=3 |pages=218β230 |doi=10.1038/nrmicro2262 |issn=1740-1534 |pmc=2967712 |pmid=20157340}}</ref> The most common examples of obligate endosymbiosis are [[mitochondria]] and [[chloroplast]]s; however, they do not reproduce via [[mitosis]] in tandem with their host cells. Instead, they replicate via [[Fission (biology)|binary fission]], a replication process uncoupled from the host cells in which they reside.<ref>{{Cite web |title=Mitochondria, Cell Energy, ATP Synthase {{!}} Learn Science at Scitable |url=https://www.nature.com/scitable/topicpage/mitochondria-14053590/ |access-date=2024-12-31 |website=www.nature.com |language=en}}</ref><ref>{{Cite web |last=Rose |first=Ray J |date=September 20, 2019 |title=Sustaining Life: Maintaining Chloroplasts and Mitochondria and their Genomes in Plants |url=https://pmc.ncbi.nlm.nih.gov/articles/PMC6747931/ |access-date=December 31, 2024 |website=National Library of Medicine: National Center for Biotechnology Information |publisher=Yale Journal of Biology and Medicine |pmid=31543711}}</ref> Some human parasites, e.g. ''[[Wuchereria bancrofti]]'' and ''[[Mansonella perstans]]'', thrive in their intermediate insect hosts because of an obligate endosymbiosis with ''[[Wolbachia]]'' spp.<ref name="Slatko-2010">{{Cite journal |last1=Slatko |first1=Barton E. |last2=Taylor |first2=Mark J. |last3=Foster |first3=Jeremy M. |date=2010-07-01 |title=The Wolbachia endosymbiont as an anti-filarial nematode target |url=https://doi.org/10.1007/s13199-010-0067-1 |journal=Symbiosis |language=en |volume=51 |issue=1 |pages=55β65 |bibcode=2010Symbi..51...55S |doi=10.1007/s13199-010-0067-1 |issn=1878-7665 |pmc=2918796 |pmid=20730111}}</ref> They can both be eliminated by treatments that target their bacterial host.<ref>{{Cite book |url=https://books.google.com/books?id=hEjqD-ygu8AC&dq=Wuchereria+bancrofti+obligated+endosymbiosis+Wolbachia&pg=PA786 |title=Oxford Textbook of Medicine: Infection |vauthors=Warrell D, Cox TM, Firth J, TΓΆrΓΆk E |date=2012-10-11 |publisher=OUP Oxford |isbn=978-0-19-965213-6 |language=en}}</ref> {{Toclimit}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)