Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Exploratory data analysis
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Approach of analyzing data sets in statistics}}{{Data Visualization}} In [[statistics]], '''exploratory data analysis''' (EDA) is an approach of [[data analysis|analyzing]] [[data set]]s to summarize their main characteristics, often using [[statistical graphics]] and other [[data visualization]] methods. A [[statistical model]] can be used or not, but primarily EDA is for seeing what the data can tell beyond the formal modeling and thereby contrasts with traditional hypothesis testing, in which a model is supposed to be selected before the data is seen. Exploratory data analysis has been promoted by [[John Tukey]] since 1970 to encourage statisticians to explore the data, and possibly formulate hypotheses that could lead to new data collection and experiments. EDA is different from [[Data analysis#Initial data analysis|initial data analysis (IDA)]],<ref>{{cite book |last=Chatfield |first=C. |year=1995 |title=Problem Solving: A Statistician's Guide |publisher=Chapman and Hall |isbn=978-0412606304 |edition=2nd }}</ref><ref>{{cite journal |doi=10.1371/journal.pcbi.1009819|title=Ten simple rules for initial data analysis|year=2022|last1=Baillie|first1=Mark|last2=Le Cessie|first2=Saskia|last3=Schmidt|first3=Carsten Oliver|last4=Lusa|first4=Lara|last5=Huebner|first5=Marianne|author6=Topic Group "Initial Data Analysis" of the STRATOS Initiative|journal=PLOS Computational Biology|volume=18|issue=2|pages=e1009819|pmid=35202399|pmc=8870512|bibcode=2022PLSCB..18E9819B |doi-access=free }}</ref> which focuses more narrowly on checking assumptions required for model fitting and hypothesis testing, and handling missing values and making transformations of variables as needed. EDA encompasses IDA.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)