Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Feature selection
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Process in machine learning and statistics}} {{More footnotes needed|date=July 2010}} {{Distinguish|Feature extraction}} In machine learning, '''feature selection''' is the process of selecting a subset of relevant [[Feature (machine learning)|features]] (variables, predictors) for use in model construction. Feature selection techniques are used for several reasons: * simplification of models to make them easier to interpret,<ref name="islr">{{cite book |author1=Gareth James |author2=Daniela Witten |author3=Trevor Hastie |author4=Robert Tibshirani |title=An Introduction to Statistical Learning |publisher=Springer |year=2013 |url=http://www-bcf.usc.edu/~gareth/ISL/ |page=204}}</ref> * shorter training times,<ref>{{Citation|last1=Brank|first1=Janez|title=Feature Selection|date=2011|url=http://link.springer.com/10.1007/978-0-387-30164-8_306|encyclopedia=Encyclopedia of Machine Learning|pages=402–406|editor-last=Sammut|editor-first=Claude|place=Boston, MA|publisher=Springer US|language=en|doi=10.1007/978-0-387-30164-8_306|isbn=978-0-387-30768-8|access-date=2021-07-13|last2=Mladenić|first2=Dunja|last3=Grobelnik|first3=Marko|last4=Liu|first4=Huan|last5=Mladenić|first5=Dunja|last6=Flach|first6=Peter A.|last7=Garriga|first7=Gemma C.|last8=Toivonen|first8=Hannu|last9=Toivonen|first9=Hannu|editor2-last=Webb|editor2-first=Geoffrey I.|url-access=subscription}}</ref> * to avoid the [[curse of dimensionality]],<ref>{{Cite journal|last=Kramer|first=Mark A.|date=1991|title=Nonlinear principal component analysis using autoassociative neural networks|url=https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690370209|journal=AIChE Journal|language=en|volume=37|issue=2|pages=233–243|doi=10.1002/aic.690370209|bibcode=1991AIChE..37..233K |issn=1547-5905|url-access=subscription}}</ref> * improve the compatibility of the data with a certain learning model class,<ref>{{Cite journal|last1=Kratsios|first1=Anastasis|last2=Hyndman|first2=Cody|date=2021|title=NEU: A Meta-Algorithm for Universal UAP-Invariant Feature Representation|url=http://jmlr.org/papers/v22/18-803.html|journal=Journal of Machine Learning Research|volume=22|issue=92|pages=1–51|issn=1533-7928}}</ref> * to encode inherent [[Symmetric space|symmetries]] present in the input space.<ref>{{Cite book|last1=Persello|first1=Claudio|last2=Bruzzone|first2=Lorenzo|title=2014 IEEE Geoscience and Remote Sensing Symposium |chapter=Relevant and invariant feature selection of hyperspectral images for domain generalization |date=July 2014|chapter-url=http://dx.doi.org/10.1109/igarss.2014.6947252|pages=3562–3565|publisher=IEEE|doi=10.1109/igarss.2014.6947252|isbn=978-1-4799-5775-0|s2cid=8368258|url=https://ris.utwente.nl/ws/files/122945513/Persello2014relevant.pdf }}</ref><ref>{{Cite book|last1=Hinkle|first1=Jacob|last2=Muralidharan|first2=Prasanna|last3=Fletcher|first3=P. Thomas|last4=Joshi|first4=Sarang|title=Computer Vision – ECCV 2012 |chapter=Polynomial Regression on Riemannian Manifolds |date=2012|editor-last=Fitzgibbon|editor-first=Andrew|editor2-last=Lazebnik|editor2-first=Svetlana|editor3-last=Perona|editor3-first=Pietro|editor4-last=Sato|editor4-first=Yoichi|editor5-last=Schmid|editor5-first=Cordelia|chapter-url=https://link.springer.com/chapter/10.1007/978-3-642-33712-3_1|series=Lecture Notes in Computer Science|volume=7574|language=en|location=Berlin, Heidelberg|publisher=Springer|pages=1–14|doi=10.1007/978-3-642-33712-3_1|isbn=978-3-642-33712-3|arxiv=1201.2395|s2cid=8849753}}</ref><ref>{{Cite journal|last=Yarotsky|first=Dmitry|date=2021-04-30|title=Universal Approximations of Invariant Maps by Neural Networks|url=https://doi.org/10.1007/s00365-021-09546-1|journal=Constructive Approximation|volume=55 |pages=407–474 |language=en|doi=10.1007/s00365-021-09546-1|issn=1432-0940|arxiv=1804.10306|s2cid=13745401}}</ref><ref>{{Cite journal|last1=Hauberg|first1=Søren|last2=Lauze|first2=François|last3=Pedersen|first3=Kim Steenstrup|date=2013-05-01|title=Unscented Kalman Filtering on Riemannian Manifolds|url=https://doi.org/10.1007/s10851-012-0372-9|journal=Journal of Mathematical Imaging and Vision|language=en|volume=46|issue=1|pages=103–120|doi=10.1007/s10851-012-0372-9|bibcode=2013JMIV...46..103H |s2cid=8501814|issn=1573-7683|url-access=subscription}}</ref> The central premise when using feature selection is that data sometimes contains features that are ''redundant'' or ''irrelevant'', and can thus be removed without incurring much loss of information.<ref name="Bermingham-prolog">{{cite journal|last1=Kratsios|first1=Anastasis|last2=Hyndman|first2=Cody|date=June 8, 2021|title=NEU: A Meta-Algorithm for Universal UAP-Invariant Feature Representation|url=https://jmlr.org/papers/v22/18-803.html|journal=[[Journal of Machine Learning Research]]|volume=22|page=10312|doi=10.1038/srep10312 |pmid=25988841 |pmc=4437376 |bibcode=2015NatSR...510312B}}</ref> Redundancy and irrelevance are two distinct notions, since one relevant feature may be redundant in the presence of another relevant feature with which it is strongly correlated.{{r|guyon-intro}} [[Feature extraction]] creates new features from functions of the original features, whereas feature selection finds a subset of the features. Feature selection techniques are often used in domains where there are many features and comparatively few samples (data points).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)