Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Finite geometry
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Geometric system with a finite number of points}} [[Image:Order 2 affine plane.svg|thumb|200px|right|Finite affine plane of order 2, containing 4 "points" and 6 "lines". Lines of the same color are "parallel". The centre of the figure is not a "point" of this affine plane, hence the two green "lines" don't "intersect".]] {{General geometry}} A '''finite geometry''' is any [[geometry|geometric]] system that has only a [[finite set|finite]] number of [[point (geometry)|points]]. The familiar [[Euclidean geometry]] is not finite, because a Euclidean line contains infinitely many points. A geometry based on the graphics displayed on a computer screen, where the [[pixel]]s are considered to be the points, would be a finite geometry. While there are many systems that could be called finite geometries, attention is mostly paid to the finite [[projective space|projective]] and [[affine space]]s because of their regularity and simplicity. Other significant types of finite geometry are finite [[Möbius plane|Möbius or inversive plane]]s and [[Laguerre plane]]s, which are examples of a general type called [[Benz plane]]s, and their higher-dimensional analogs such as higher finite [[inversive geometry|inversive geometries]]. Finite geometries may be constructed via [[linear algebra]], starting from [[vector space]]s over a [[finite field]]; the affine and [[projective plane]]s so constructed are called [[Galois geometry|Galois geometries]]. Finite geometries can also be defined purely axiomatically. Most common finite geometries are Galois geometries, since any finite [[projective space]] of dimension three or greater is [[isomorphism|isomorphic]] to a projective space over a finite field (that is, the projectivization of a vector space over a finite field). However, dimension two has affine and projective planes that are not isomorphic to Galois geometries, namely the [[non-Desarguesian plane]]s. Similar results hold for other kinds of finite geometries.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)