Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Finite volume method
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Method for representing and evaluating partial differential equations}} {{Differential equations}} The '''finite volume method''' ('''FVM''') is a method for representing and evaluating [[partial differential equation]]s in the form of algebraic equations.<ref>{{cite book|last=LeVeque|first=Randall|date=2002|title=Finite Volume Methods for Hyperbolic Problems|url=https://www.cambridge.org/core/books/finite-volume-methods-for-hyperbolic-problems/97D5D1ACB1926DA1D4D52EAD6909E2B9|isbn=9780511791253}}</ref> In the finite volume method, volume integrals in a partial differential equation that contain a [[divergence]] term are converted to [[surface integral]]s, using the [[divergence theorem]]. These terms are then evaluated as fluxes at the surfaces of each finite volume. Because the flux entering a given volume is identical to that leaving the adjacent volume, these methods are [[Conservation law (physics)|conservative]]. Another advantage of the finite volume method is that it is easily formulated to allow for unstructured meshes. The method is used in many [[computational fluid dynamics]] packages. "Finite volume" refers to the small volume surrounding each node point on a mesh.<ref>{{Cite journal |last1=Wanta |first1=D. |last2=Smolik |first2=W. T. |last3=Kryszyn |first3=J. |last4=Wróblewski |first4=P. |last5=Midura |first5=M. |date=October 2021 |title=A Finite Volume Method using a Quadtree Non-Uniform Structured Mesh for Modeling in Electrical Capacitance Tomography |journal=Proceedings of the National Academy of Sciences, India Section A: Physical Sciences |volume=92 |issue=3 |pages=443–452 |language=en|doi=10.1007/s40010-021-00748-7 |doi-access=free}}</ref> Finite volume methods can be compared and contrasted with the [[finite difference method]]s, which approximate derivatives using nodal values, or [[finite element method]]s, which create local approximations of a solution using local data, and construct a global approximation by stitching them together. In contrast a finite volume method evaluates exact expressions for the ''average'' value of the solution over some volume, and uses this data to construct approximations of the solution within cells.<ref>{{Cite journal|last1=Fallah|first1=N. A.|last2=Bailey|first2=C.|last3=Cross|first3=M.|last4=Taylor|first4=G. A.|date=2000-06-01|title=Comparison of finite element and finite volume methods application in geometrically nonlinear stress analysis|journal=Applied Mathematical Modelling|language=en|volume=24|issue=7|pages=439–455|doi=10.1016/S0307-904X(99)00047-5|issn=0307-904X|doi-access=free}}</ref><ref>{{Cite book|last=Ranganayakulu, C. (Chennu)|title=Compact heat exchangers : analysis, design and optimization using FEM and CFD approach|others=Seetharamu, K. N.|isbn=978-1-119-42435-2|location=Hoboken, NJ|chapter=Chapter 3, Section 3.1|date=2 February 2018 |oclc=1006524487}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)