Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Generic and specific intervals
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
[[Image:Maximal evenness seconds.png|thumb|The [[major scale]] is [[maximal evenness|maximally even]]. For example, for every generic interval of a second there are only two possible specific intervals: 1 semitone (a minor second) or 2 semitones (a major second).]] In [[diatonic set theory]] a '''generic interval''' is the number of scale [[Step (music)|steps]] between [[note (music)|notes]] of a [[Set (music)|collection]] or [[scale (music)|scale]]. The largest generic [[interval (music)|interval]] is one less than the number of scale members. (Johnson 2003, p. 26) A '''specific interval''' is the clockwise distance between [[pitch class]]es on the [[chromatic circle]] ([[interval class]]), in other words the number of [[half step]]s between [[note (music)|notes]]. The largest specific [[interval (music)|interval]] is one less than the number of "chromatic" pitches. In twelve tone equal temperament the largest specific interval is 11. (Johnson 2003, p. 26) In the [[diatonic collection]] the generic interval is one less than the corresponding diatonic interval: * Adjacent intervals, [[Major second|second]]s, are 1 * [[Major third|Third]]s = 2 * [[Perfect fourth|Fourth]]s = 3 * [[Perfect fifth|Fifth]]s = 4 * [[Major sixth|Sixth]]s = 5 * [[Major seventh|Seventh]]s = 6 The largest generic interval in the diatonic scale being 7 β 1 = 6.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)