Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gibbs–Helmholtz equation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|A thermodynamic equation}} The '''Gibbs–Helmholtz equation''' is a [[thermodynamics|thermodynamic]] [[equation]] used to calculate changes in the [[Gibbs free energy]] of a system as a function of [[temperature]]. It was originally presented in an 1882 paper entitled "[[Thermodynamik chemischer Vorgänge|Die Thermodynamik chemischer Vorgänge]]" by [[Hermann von Helmholtz]]. It describes how the Gibbs free energy, which was presented originally by [[Josiah Willard Gibbs]], varies with temperature.<ref>{{cite journal |last1=von Helmholtz |first1=Hermann |title=Die Thermodynamik chemischer Vorgange |journal=Ber. KGL. Preuss. Akad. Wiss. Berlin |date=1882 |volume=I |pages=22–39}}</ref> It was derived by [[Hermann von Helmholtz|Helmholtz]] first, and Gibbs derived it only 6 years later.<ref>{{Cite journal |last=Jensen |first=William B. |date=2016-01-27 |title=Vignettes in the history of chemistry. 1. What is the origin of the Gibbs–Helmholtz equation? |url=https://doi.org/10.1007/s40828-015-0019-8 |journal=ChemTexts |language=en |volume=2 |issue=1 |pages=1 |doi=10.1007/s40828-015-0019-8 |issn=2199-3793|doi-access=free }}</ref> The attribution to Gibbs goes back to [[Wilhelm Ostwald]], who first translated [[On the Equilibrium of Heterogeneous Substances|Gibbs' monograph]] into German and promoted it in Europe.<ref>At the last paragraph on page 638, of Bancroft, W. D. (1927). ''[https://books.google.com/books?id=umdGAQAAIAAJ&dq=%22Helmholtz+did+deduce+and+which+Gibbs+could+have%22&pg=PA638 Review of: Thermodynamics for Students of Chemistry. By C. N. Hinshelwood]''. The Journal of Physical Chemistry, 31, 635-638.</ref><ref>{{Cite journal |last=Daub |first=Edward E. |date=December 1976 |title=Gibbs phase rule: A centenary retrospect |url=https://pubs.acs.org/doi/abs/10.1021/ed053p747 |journal=Journal of Chemical Education |language=en |volume=53 |issue=12 |pages=747 |doi=10.1021/ed053p747 |issn=0021-9584|url-access=subscription }}</ref> The equation is:<ref name="P">Physical chemistry, [[P. W. Atkins]], Oxford University Press, 1978, {{ISBN|0-19-855148-7}}</ref> {{Equation box 1 |indent =: |equation = <math>\left( \frac{\partial \left( \frac{G} {T} \right) } {\partial T} \right)_p = - \frac {H} {T^2},</math> |border colour = #50C878 |background colour = #ECFCF4 }} where ''H'' is the [[enthalpy]], ''T'' the [[absolute temperature]] and ''G'' the [[Gibbs free energy]] of the system, all at constant [[pressure]] ''p''. The equation states that the change in the ''G/T'' ratio at constant pressure as a result of an [[infinitesimally]] small change in temperature is a factor ''H/T''<sup>2</sup>. Similar equations include<ref>{{Cite book |last=Pippard |first=Alfred B. |title=Elements of classical thermodynamics: for advanced students of physics |date=1981 |publisher=Univ. Pr |isbn=978-0-521-09101-5 |edition=Repr |location=Cambridge |chapter=5: Useful ideas}}</ref> {| class="wikitable" |+ | |<math display="inline">U = -T^2\left(\frac{\partial}{\partial T}\frac FT\right)_V</math> | |<math display="inline">F = -S^2\left(\frac{\partial}{\partial S}\frac US\right)_V</math> | |- |<math>U = -P^2\left(\frac{\partial}{\partial P}\frac{H}{P}\right)_S</math> |<math>U</math> |<math>\leftrightarrow U-F = TS</math> |<math>F</math> |<math display="inline">F = -P^2\left(\frac{\partial}{\partial P}\frac GP\right)_T</math> |- | |<math>\updownarrow U-H = -PV</math> | |<math>\updownarrow G-F = PV</math> | |- |<math display="inline">H = -V^2\left(\frac{\partial}{\partial V}\frac UV\right)_S</math> |<math>H</math> |<math>\leftrightarrow G-H = -TS</math> |<math>G</math> |<math display="inline">G = -V^2\left(\frac{\partial}{\partial V}\frac{F}{V}\right)_T</math> |- | |<math display="inline">H = -T^2\left(\frac{\partial}{\partial T}\frac GT\right)_P</math> | |<math display="inline">G = -S^2\left(\frac{\partial}{\partial S}\frac{H}{S}\right)_p</math> | |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)